Zinc: A Critical Micronutrient for Growth and Development of Plants

Main Article Content

Divya Dubey
Girish C. Pathak*

Abstract

Zinc is indeed a critical micronutrient found in very low amounts in the soil, which may limit the growth and reproduction of crops. The absorption of Zn by plants is directly influenced by several factors such as high pH, amount of organic matter, high humidity associated with low temperatures, and soil microorganisms. Zinc is an integral component of enzyme structures and it is also a regulatory cofactor for many enzymes that are required for the synthesis of chlorophyll, proteins, and carbohydrates. Zinc is important for enzymatic activity, being a constituent part of the enzyme’s alcohol dehydrogenase, carbonic anhydrase, Cu/Zn superoxide dismutase enzyme, and polymer RNA, in addition to participating in the synthesis of precursor tryptophan in the metabolism of indoleacetic acid, which is a plant hormone directly related to the development of plants. The functioning of these enzymes is affected significantly due to Zn deficiency and there will be a retarded growth and low productivity of crops because these enzymes are crucial for the growth and overall health of the plant. Zinc deficiency in plants is characterized by shortened internodes, reduced leaf area and size, the formation of rosettes, chlorosis, and necrosis. Almost half of the world’s cereal crops are deficient in Zn, leading to poor crop yield. One-third of the world's population is at risk of Zn deficiency. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality. This review aims to outline the key aspects of zinc as a nutrient in the soil and its roles in plants.

Article Details

How to Cite
Dubey, D., & Pathak, G. C. (2024). Zinc: A Critical Micronutrient for Growth and Development of Plants. Journal of Applied Bioscience, 50(2), 95–102. Retrieved from https://9vom.in/journals/index.php/joab/article/view/460
Section
Review Article

References

Abdel Salam, M., Mokhtar, M., Albukhari, S. M., Baamer, D. F., Palmisano, L., Jaremko, M., & Abukhadra, M.R. (2022). Synthesis and characterization of green ZnO@ polynaniline/bentonite tripartite structure (G. Zn@ PN/BE) as adsorbent for as (V) ions: Integration, steric, and energetic properties. Polymers, 14(12): 2329.

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3): 42.

Alloway, B. J. (Ed.). (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media.

Anisimov, V. S., Anisimova, L. N., &Sanzharov, A. I. (2021). Zinc plant uptake as result of edaphic factors acting. Plants, 10(11): 2496.

Awan, Z. A., Shoaib, A., & Khan, K. A. (2019). Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. The plant pathology journal, 35(4): 330.

Bączek-Kwinta, R., Baran, A., Simlat, M., Lang, J., Bieniek, M., & Florek, B. (2020). Enrichment of different plant seeds with zinc and assessment of health risk of Zn-fortified sprouts consumption. Agronomy, 10(7): 937.

Barman, H., Das, S. K., & Roy, A. (2018). Zinc in soil environment for plant health and management strategy. Universal Journal of Agricultural Research, 6(5): 149-154.

Bastakoti, S. (2023). Role of zinc in management of plant diseases: A review. Cogent Food & Agriculture, 9(1): 2194483.

Batool, M., El-Badri, A. M., Hassan, M. U., Haiyun, Y., Chunyun, W., Zhenkun, Y., ... & Zhou, G. (2022). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation: 1-25.

Bouain, N., Satbhai, S. B., Korte, A., Saenchai, C., Desbrosses, G., Berthomieu, P., & Rouached, H. (2018). Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. PLoS Genetics, 14(4): e1007304.

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New phytologist, 173(4): 677-702.

Carbonare, L. D., White, M. D., Shukla, V., Francini, A., Perata, P., Flashman, E., ... & Licausi, F. (2019). Zinc excess induces a hypoxia-like response by inhibiting cysteine oxidases in poplar roots. Plant physiology, 180(3): 1614-1628.

Chasapis, C. T., Ntoupa, P. S. A., Spiliopoulou, C. A., & Stefanidou, M. E. (2020). Recent aspects of the effects of zinc on human health. Archives of toxicology, 94: 1443-1460.

D’Imperio, M., Montesano, F. F., Serio, F., Santovito, E., & Parente, A. (2022). Mineral composition and bioaccessibility in rocket and purslane after zn biofortification process. Foods, 11(3): 484.

DalCorso, G., Martini, F., Fasani, E., Manara, A., Visioli, G., &Furini, A. (2021). Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. Planta, 253(6): 117.

De Groote, H., Tessema, M., Gameda, S., & Gunaratna, N. S. (2021). Soil zinc, serum zinc, and the potential for agronomic biofortification to reduce human zinc deficiency in Ethiopia. Scientific Reports, 11(1): 8770.

Di Gioia, F., Petropoulos, S. A., Ozores-Hampton, M., Morgan, K., & Rosskopf, E. N. (2019). Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy, 9(11): 677.

Elazab, D. S., Abdel-Wahab, D. A., & El-Mahdy, M. T. (2021). Iron and zinc supplies mitigate cadmium toxicity in micropropagated banana (Musa spp.). Plant Cell, Tissue and Organ Culture (PCTOC), 145: 367-377.

Faran, M., Farooq, M., Rehman, A., Nawaz, A., Saleem, M. K., Ali, N., & Siddique, K. H. (2019). High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant and Soil, 437: 195-213.

Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. D. C. (2020). Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in pak choi (Brassica rapa L.) plants. Agronomy, 10(3): 450.

Garg, N., & Singh, S. (2018). Arbuscular mycorrhiza Rhizophagusirregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp.(pigeonpea) genotypes under cadmium and zinc stress. Journal of plant growth regulation, 37: 46-63.

Gitto, A., & Fricke, W. (2018). Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform‐dependent decrease in aquaporin gene expression. Physiologia Plantarum, 164(2): 176-190.

Gupta, S., Brazier, A. K. M., & Lowe, N. M. (2020). Zinc deficiency in low‐and middle‐income countries: prevalence and approaches for mitigation. Journal of Human Nutrition and Dietetics, 33(5): 624-643.

Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H., &Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13: 1033092.

Hasballah, A. F., &Beheary, M. S. (2016). Detection of heavy metals in breast milk and drinking water in Damietta Governorate, Egypt. Asian Journal of Biology, 1(2): 1-7.

Hassan, M. U., Nawaz, M., Mahmood, A., Shah, A. A., Shah, A. N., Muhammad, F., ... & Qari, S. H. (2022). The role of zinc to mitigate heavy metals toxicity in crops. Frontiers in Environmental Science, 10: 990223.

Hernandez-Apaolaza, L. (2014). Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta, 240(3): 447-458.

Kaur, H., & Garg, N. (2017). Zinc-arbuscular mycorrhizal interactions: effect on nutrient pool, enzymatic antioxidants, and osmolyte synthesis in pigeonpea nodules subjected to Cd stress. Communications in Soil Science and Plant Analysis, 48(14):1684-1700.

Kaur, H., & Garg, N. (2021). Zinc toxicity in plants: a review. Planta, 253(6): 129.

Kavitha, P. G., Kuruvilla, S., & Mathew, M. K. (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97: 165-174.

Kaznina, N. M., Batova, Y. V., Kholoptseva, E. S., & Titov, A. F. (2022). Effect of zinc deficiency in substrate on growth, photosynthetic apparatus and seed productivity of Barley. Russian Journal of Plant Physiology, 69(5): 100.

Khoshgoftarmanesh, A. H., Afyuni, M., Norouzi, M., Ghiasi, S., & Schulin, R. (2018). Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma, 309: 1-6.

Li, L., Zhang, Y., Ippolito, J. A., Xing, W., Qiu, K., & Wang, Y. (2020). Cadmium foliar application affects wheat Cd, Cu, Pb and Zn accumulation. Environmental Pollution, 262: 114329.

Machado, P. P., Steiner, F., Zuffo, A. M., & Machado, R. A. (2018). Could the supply of boron and zinc improve resistance of potato to early blight? Potato Research, 61: 169-182.

Małecka, A., Konkolewska, A., Hanć, A., Barałkiewicz, D., Ciszewska, L., Ratajczak, E., ... &Jarmuszkiewicz, W. (2019). Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): Metal accumulation and antioxidant enzyme activity. International Journal of Molecular Sciences, 20(18): 4355.

Mapodzeke, J. M., Adil, M. F., Wei, D., Joan, H. I., Ouyang, Y., & Shamsi, I. H. (2021). Modulation of key physio-biochemical and ultrastructural attributes after synergistic application of zinc and silicon on rice under cadmium stress. Plants, 10(1): 87.

Marschner, H. (Ed.). (2011). Marschner's mineral nutrition of higher plants: Academic press

Mishra, B., McDonald, L. M., Roy, M., Lanzirotti, A., & Myneni, S. C. (2020). Uptake and speciation of zinc in edible plants grown in smelter contaminated soils. PLoS One, 15(4): e0226180.

Mona, E. E., Ibrahim, S. A., & Manal, F. M. (2012). Combined effect of NPK levels and foliar nutritional compounds on growth and yield parameters of potato plants (Solanum tuberosum L.). Afr. J. Microbiol. Res, 6(24): 5100-5109.

Montanha, G. S., Rodrigues, E. S., Romeu, S. L., de Almeida, E., Reis, A. R., Lavres Jr, J., & de Carvalho, H. W. P. (2020). Zinc uptake from ZnSO4 (aq) and Zn-EDTA (aq) and its root-to-shoot transport in soybean plants (Glycine max) probed by time-resolved in vivo X-ray spectroscopy. Plant Science, 292: 110370.

Moreira, A., Moraes, L. A., & dos Reis, A. R. (2018). The molecular genetics of zinc uptake and utilization efficiency in crop plants. Plant micronutrient use efficiency: 87-108.

Mori, A., Kirk, G. J., Lee, J. S., Morete, M. J., Nanda, A. K., Johnson-Beebout, S. E., &Wissuwa, M. (2016). Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-induced changes in the rhizosphere. Frontiers in Plant Science, 6: 1160.

Muthukumar, T., Jaison, S., & BABU, S. D. (2018). Zinc Influences Regeneration of Talinum portulacifolium Stem Cuttings in Nutrient Solution. Notulae Scientia Biologicae, 10(4): 530-539.

Nowroz, F., Alam, M. M., & Raihan, M. R. H. (2022). Zinc Priming Triggers Osmoregulation to Enhancing Growth of Soybean (Glycine Max L.) Under Salinity. Bangladesh Agronomy Journal, 25(1): 47-56.

Oliveira, V. D. S., Marchiori, J. J. D. P., Ferreira, L. D. S., Boone, G. T. F., Pereira, L. L. D. S., Carriço, E., &Bolsoni, E. Z. (2023). The Nutrient Zinc in Soil and Plant: A Review. International Journal of Plant & Soil Science, 35(4): 25-30.

Osman, H. S., Gowayed, S. M., Elbagory, M., Omara, A. E. D., El-Monem, A. M. A., Abd El-Razek, U. A., & Hafez, E. M. (2021). Interactive impacts of beneficial microbes and Si-Zn nanocomposite on growth and productivity of soybean subjected to water deficit under salt-affected soil conditions. Plants, 10(7): 1396.

Pandey, N., Gupta B. and Pathak G.C. (2013). Enhanced yield and nutritional enrichment of seeds of Pisum sativum through foliar application of zinc. Scientia Horticulture 164: 474-483.

Paradisone, V., Navarro-León, E., Ruiz, J. M., Esposito, S., & Blasco, B. (2021). Calcium silicate ameliorates zinc deficiency and toxicity symptoms in barley plants through improvements in nitrogen metabolism and photosynthesis. Acta Physiologiae Plantarum, 43(12): 154.

Pathak, G.C., Gupta, B. and Pandey, N., (2012). Improving reproductive efficiency of chickpea by foliar application of zinc. Brazilian Journal of Plant Physiology, 24, pp.173-180.

Paun, S., Tudosie, M., Petris, R., & Macovei, R. (2012). The effects of zinc on human body, including on renal failure and renal transplantation. Journal of Medicine and Life, 5(Spec Issue): 137.

Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., &Goltsev, V. (2018). Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. International journal of molecular sciences, 19(3): 787.

Poudel, P., Di Gioia, F., Lambert, J. D., & Connolly, E. L. (2023). Zinc biofortification through seed Nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. Frontiers in Plant Science, 14: 1177844.

Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A. H., ... & Jaremko, M. (2021). Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides, 3(1): 1-31.

Prasad, R., Shivay, Y. S., & Kumar, D. (2016). Interactions of zinc with other nutrients in soils and plants-A Review. Indian Journal of Fertilisers, 12(5): 16-26.

Priyanka, N., Geetha, N., Manish, T., Sahi, S. V., & Venkatachalam, P. (2021). Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicology Reports, 8: 295-302.

Rahman, M., Rahman, K., Sathi, K. S., Alam, M. M., Nahar, K., Fujita, M., &Hasanuzzaman, M. (2021). Supplemental selenium and boron mitigate salt-induced oxidative damages in Glycine max L. Plants, 10(10): 2224.

Raza, A. (2022). Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant cell reports, 41(3): 741-763.

Reider, C. A., Chung, R. Y., Devarshi, P. P., Grant, R. W., & Hazels Mitmesser, S. (2020). Inadequacy of immune health nutrients: intakes in US adults, the 2005–2016 NHANES. Nutrients, 12(6): 1735.

Rugeles-Reyes, S. M., CECÍLIO, A. B., Lopez Aguilar, M. A., & Silva, P. H. S. (2019). Foliar application of zinc in the agronomic biofortification of arugula. Food Science and Technology, 39: 1011-1017.

Sahin, O. (2021). Combined biofortification of soilless grown lettuce with iodine, selenium and zinc and its effect on essential and non-essential elemental composition. Journal of Plant Nutrition, 44(5): 673-678.

Sanjosé, I., Navarro-Roldán, F., Infante-Izquierdo, M. D., Martínez-Sagarra, G., Devesa, J. A., Polo, A., ... & Muñoz-Rodríguez, A. F. (2021). Accumulation and effect of heavy metals on the germination and growth of Salsola vermiculata L. seedlings. Diversity, 13(11): 539.

Sasaki, A., Yamaji, N., Mitani‐Ueno, N., Kashino, M., & Ma, J. F. (2015). A node‐localized transporter Os ZIP 3 is responsible for the preferential distribution of Zn to developing tissues in rice. The Plant Journal, 84(2): 374-384.

Saxena, V., Bharti, M. K., Kumar, P., Singh, J., & Patel, V. B. (2023). Effect of zinc uptake on alcohol dehydrogenase, protein and mineral contents of hydroponically grown chickpea (Cicerarietinum). Journal of Plant Nutrition, 46(6): 867-876.

Senbayram, M., Gransee, A., Wahle, V., & Thiel, H. (2015). Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66(12): 1219-1229.

Shi, W. G., Liu, W., Yu, W., Zhang, Y., Ding, S., Li, H., ... & Luo, Z. B. (2019). Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus× canescens. Journal of hazardous materials, 362: 275-285.

Siddiqui, M. H., Alamri, S., Al-Khaishany, M. Y., Khan, M. N., Al-Amri, A., Ali, H. M., ... & Alsahli, A. A. (2019). Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. International Journal of Molecular Sciences, 20(2): 353.

Souza, S. C., Souza, L. A., Schiavinato, M. A., de Oliveira Silva, F. M., & de Andrade, S. A. (2020). Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicology and Environmental Safety, 195: 110450.

Stuckey, J. W., Neaman, A., Verdejo, J., Navarro-Villarroel, C., Peñaloza, P., &Dovletyarova, E. A. (2021). Zinc alleviates copper toxicity to lettuce and oat in copper-contaminated soils. Journal of Soil Science and Plant Nutrition, 21: 1229-1235.

Sultan, I., Khan, I., Chattha, M. U., Hassan, M. U., Barbanti, L., Calone, R., ... & Usman, S. (2021). Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian Journal of Agronomy, 16(3): 1-11.

Szopiński, M., Sitko, K., Gieroń, Ż., Rusinowski, S., Corso, M., Hermans, C., ... &Małkowski, E. (2019). Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Frontiers in Plant Science, 10: 748.

Tan, L., Qu, M., Zhu, Y., Peng, C., Wang, J., Gao, D., & Chen, C. (2020). ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 183(3): 1235-1249.

Tiong, J., McDonald, G., Genc, Y., Shirley, N., Langridge, P., & Huang, C. Y. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root‐to‐shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207(4): 1097-1109.

Tokumoto, H., Yoshihara, S., Yamamoto, K., Nakajima, Y., Ibuchi, K., Nomura, T., & Kurahashi, K. (2023). When roots are overexposed to ZnO nanoparticles, the absorbed zinc accumulates in the root cell wall, inhibiting root elongation and chlorophyll production.

Tsonev, T., &Cebola Lidon, F. J. (2012). Zinc in plants-an overview. Emirates Journal of Food & Agriculture (EJFA): 24(4).

ul Hassan, Z., Ali, S., Rizwan, M., Hussain, A., Akbar, Z., Rasool, N., & Abbas, F. (2017). Role of zinc in alleviating heavy metal stress. Essential Plant Nutrients: Uptake, Use Efficiency, and Management: 351-366.

Wang, Y. H., Zou, C. Q., Mirza, Z., Li, H., Zhang, Z. Z., Li, D. P., ... & Zhang, Y. Q. (2016). Cost of agronomic biofortification of wheat with zinc in China. Agronomy for Sustainable Development, 36: 1-7.

Wessels, I., Rolles, B., Slusarenko, A. J., & Rink, L. (2022). Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. British journal of Nutrition, 127(2): 214-232.

White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in plant science, 10(12): 586-593.

Wu, C., Dun, Y., Zhang, Z., Li, M., & Wu, G. (2020). Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 190: 110091.

Zainab, N., Amna, Khan, A. A., Azeem, M. A., Ali, B., Wang, T., ... & Chaudhary, H. J. (2021). PGPR-mediated plant growth attributes and metal extraction ability of Sesbania sesban L. in industrially contaminated soils. Agronomy, 11(9): 1820.

Zhang, H., Yang, J., Li, W., Chen, Y., Lu, H., Zhao, S., & Li, C. (2019). PuHSFA4a enhances tolerance to excess zinc by regulating reactive oxygen species production and root development in Populus. Plant Physiology, 180(4): 2254-2271.

Zhang, P., Sun, L., Qin, J., Wan, J., Wang, R., Li, S., & Xu, J. (2018). cGMP is involved in Zn tolerance through the modulation of auxin redistribution in root tips. Environmental and Experimental Botany, 147: 22-30.

Zhou, J., Moore, R. E., Rehkämper, M., Kreissig, K., Coles, B., Sun, Y., ... & Wu, L. (2023). Zinc supply affects cadmium uptake and translocation in the hyperaccumulator sedum plumbizincicola as evidenced by isotope fractionation. Environmental Science & Technology, 57(14): 5891-5902.