Role of Zinc in Mitigating Drought Stress and Enhancing Resilience in Maize (Zea mays L.)
Main Article Content
Abstract
This review examines the impact of drought stress on maize and the role of zinc (Zn) in enhancing drought resistance. Maize, is a crucial crop in India, faces significant challenges due to abiotic stresses, particularly drought, which adversely affects its growth, physiology, yield, and nutritional quality. Drought stress leads to reduced plant height, leaf area, and photosynthesis, ultimately impacting kernel production. Zinc is an essential micronutrient, plays a vital role in regulating various physiological processes, including chlorophyll synthesis and stress responses. The review highlights the mechanisms by which Zn enhances maize's resilience to drought, including improved root development, increased water absorption, and enhanced expression of aquaporins (AQPs). Furthermore, it discusses agronomic strategies for Zn biofortification, such as foliar application and seed priming, to mitigate Zn deficiency in maize grown in zinc-deficient soils. The genetic basis of Zn accumulation in maize is also explored, emphasizing the potential of marker-assisted selection and quantitative trait locus (QTL) mapping to develop high-yielding, zinc-enriched maize varieties. Overall, this review highlights the crucial role of zinc in enhancing maize's drought tolerance and nutritional quality, thereby enhancing food security in the face of climate change.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Agrawal, P. K., Jaiswal, S. K., Prasanna, B. M., Hossain, F., Saha, S., Guleria, S. K., & Gupta, H. S. (2012). Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes. Ind. J. Gen. and Plant Breed., 72: 421-428.
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health, 31: 537-548.
Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. Inter. J. Molec. Sci., 14: 4885-4911.
Aref, F. (2010). Zinc and boron fertilization on concentration and uptake of iron and manganese in the corn grain. J. Amer. Sci., 6: 236-242.
Ariani, A., Barozzi, F., Sebastiani, L., di Toppi, L. S., di Sansebastiano, G. P. & Andreucci, A. (2019). AQUA1 is a mercury sensitive poplar aquaporin regulated at transcriptional and post-translational levels by Zn stress. Plant Physiol. Biochem., 135: 588-600.
Baxter, I. R., Gustin, J. L., Settles, A. M., & Hoekenga, O. A. (2013). Ionomic characterization of maize kernels in the intermated B73× Mo17 population. Crop Sci., 53: 208-220.
Bogeat-Triboulot, M. B., Brosché, M., Renaut, J., Jouve, L., Le Thiec, D., Fayyaz, P. & Dreyer, E. (2007). Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol., 143: 876-892.
Chakraborti, M., Prasanna, B. M., Singh, A. M., & Hossain, F. (2010). Generation mean analysis of kernel iron and zinc concentrations in maize (Zea mays). Indian J. Agri. Sciences, 80: 956-970.
Chen, F., Chun, L., Song, J. & Mi, G. (2007). Heterosis and genetic analysis of iron concentration in grains and leaves of maize. Plant Breeding, 126: 107–109.
Collard, B. C. & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 557-572.
Dubey, D. & Pathak G.C. (2024). Zinc: A critical micronutrient for growth and development of plants. J. App. Bios.50 (2): 95-102.
Earl, H. J. (2002). Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exp. Bot. 48: 237-246.
Faran, M., Farooq, M., Rehman, A., Nawaz, A., Saleem, M. K., Ali, N. & Siddique, K. H. (2019). High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant Soil, 437: 195-213.
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A. & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture 153-188.
Gitto, A. & Fricke, W. (2018). Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform dependent decrease in aquaporin gene expression. Physiol. Plant., 164: 176-190.
Grewal, H. S. & Williams, R. (2000). Zinc nutrition affects alfalfa responses to water stress and excessive moisture. J. Plant Nut., 23: 949-962.
Gupta, H. S., Hossain, F., & Muthusamy, V. (2015). Biofortification of maize: An Indian perspective. Indian J. Gen. Plant Breed., 75: 1-22.
Gupta, N., Ram, H. & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev. Environ. Sci. Bio. Tech., 15: 89-109.
Hachez, C., Veselov, D., Ye, Q., Reinhardt, H., Knipfer, T., Fricke, W. & Chaumont, F. (2012). Short term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell & Environ., 35: 185-198.
Hossain, M. A., Jahiruddin, M., Islam, M. R. & Mian, M. H. (2008). The requirement of zinc for improvement of crop yield and mineral nutrition in the maize–mungbean–rice system. Plant Soil, 306:13-22.
Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K. & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant. 32: 979-986.
Jeong, J. & Guerinot, M. L. (2009). Homing in on iron homeostasis in plants. Trends Plant Sci., 14: 280-285.
Kaldenhoff, R., Ribas-Carbo, M. I. Q. U. E. L., Sans, J. F., Lovisolo, C., Heckwolf, M. & Uehlein, N. (2008). Aquaporins and plant water balance. Plant, Cell Environ., 31: 658-666.
Kanwal, S., Rahmatullah, A. R. & Ahmad, R. A. S. (2010). Zinc partitioning in maize grain after soil fertilization with zinc sulfate. Inter. J. Agri. Biol., 12: 299-302.
Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci., 5: 709-725.
Klofác, D., Antosovsky, J. & Skarpa, P. (2023). Effect of zinc foliar fertilization alone and combined with trehalose on maize (Zea mays L.) growth under the drought. Plants, 12: 2539-2556.
Knipfer, T., & Fricke, W. (2010). Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol., 187: 159-170.
Liu, Y., Zhang, C., Chen, J., Guo, L., Li, X., Li, W., Yu, Z. & Wang, J. (2016). Zinc application alleviates drought stress by regulating water relations and enhancing antioxidant defense in wheat seedlings. Plant Growth Reguln., 80 (1): 69-77.
Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y. & Guo, T., 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Front. Plant Sci. 8: 860- 876.
Malviya, S., Pathak G.C. & Pandey S.N. (2023). Response of Phaseolus vulgaris towards zinc and iron management in soil with respect to growth, pigments and protein contents. Inter. J. Plant Environ. 9 (2): 176-179.
Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G. & Zou, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutri., 14(2): 459-470.
Mc Mullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q. & Buckler, E. S. (2009). Genetic properties of the maize nested association mapping population. Science, 325: 737-740.
Menkir, A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem., 110: 454-464.
Mohsin, A. U., Ahmad, A. U. H., Farooq, M. & Ullah, S. (2014). Influence of zinc application through seed treatment and foliar spray on growth, productivity and grain quality of hybrid maize. J. Animal Plant Sci., 24(5): 1494–1503.
North, G. B. & Nobel, P. S. (2005). Root hydraulic conductivity and xylem structure in response to drought in a desert succulent. Funct. Plant Biol., 32(6): 583–593.
Noulas, C., Tziouvalekas, M. & Karyotis, T. (2018). Zinc in soils, water and food crops. J. Trace Elem. Med. Biol., 49: 252-260.
Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A. & Cakmak, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiol. Plant., 128(1): 144-152.
Pandey, N., Pathak, G. C. & Singh, A. K. (2010). Differential sensitivity of maize to Zn deficiency and high light intensity. Plant Stress. 4 (1): 18-24.
Pandey, N., Pathak, G. C., Singh, A. K. & Sharma, C. P. (2002 a). Enzymic changes in response to zinc nutrition. J. Plant Physiol., 159(10): 1151-1153.
Pandey, N., Singh, A. K, Pathak, G. C. & Sharma, C. P. (2002 b). Effect of zinc on antioxidant response in maize leaves. Indian J. Exp. Biol. 40: 954-956.
Pathak, G.C. (2021). Impact of Zn nutrition on crop & human health. A Statistical Approach to Nutrition and Human Health ISBN 9-789386-661029: 27-36.
Peret, B., Li, G., Zhao, J., Band, L. R., Voß, U., Postaire, O., Luu, D.-T., Da Ines, O., Casimiro, I., Lucas, M., Wells, D. M., Lazzerini, L., Nacry, P., King, J. R., Jensen, O. E., Schaffner, A. R., Maurel, C. & Bennett, M. J. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biol., 14(10): 991–998.
Qin, H., Cai, Y., Liu, Z., Wang, G., Wang, J., Guo, Y. & Wang, H. (2012). Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica, 187: 345-358.
Sade, N., Vinocur, B. J., Diber, A., Shatil, A., Ronen, G., Nissan, H. & Moshelion, M. (2009). Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion. New Phytol., 181(3), 651-661.
Saha, S., Saha, B., Murmu, S., Pati, S. & Roy, P. D. (2014). Grain yield and phosphorus uptake by wheat as influenced by long-term phosphorus fertilization. Afr. J. Agric. Res., 9: 607-612.
Sairam, R. K. & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J. Agron. Crop Sci., 184(1), 55-61.
Sapeta, H., Costa, J. M., Lourenco, T., Maroco, J., Van der Linde, P. & Oliveira, M. M. (2013). Drought stress response in Jatropha curcas: growth and physiology. Environ. Exp. Bot., 85: 76-84.
Singh, D., Ghosh, S., Roxy, M. K., & Mc Dermid, S. (2019). Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdisciplinary Reviews: Climate Change, 10(2), e571 DOI: 10.1002/wcc.571.
Suganya, A. (2015). Biofortification of zinc in maize (Zea mays L.) through fertilization. Ind. J. Agric. Sci., 85, 331-335.
Sutka, M., Li, G., Boudet, J., Pelleschi-Travier, S., & Maurel, C. (2016). Natural variation in root hydraulic architecture and aquaporin function enhances drought tolerance in wheat (Triticum aestivum L.). Plant Cell Environ., 39(5): 953-964.
Tiwari, Y. K., & Yadav, S. K. (2020). Effect of high-temperature stress on ascorbate–glutathione cycle in maize. Agri. Res., 9: 179-187.
Welch, R. M. & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 55: 353–364.
Zargar, S. M., Nagar, P., Deshmukh, R., Nazir, M., Wani, A. A., Masoodi, K. Z. & Rakwal, R. (2017). Aquaporins as potential drought tolerance inducing proteins: towards instigating stress tolerance. J. Proteomics, 169: 233-238.
Zhang J, Jia W, Yang J, Ismail AM (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 97:111–119.
Zhang, Y. Q., Pang, L. L., Yan, P., Liu, D. Y., Zhang, W., Yost, R. & Zou, C. Q. (2013). Zinc fertilizer placement affects zinc content in maize plant. Plant and Soil, 372: 81-92.
Zhang, Y., & Xu, Y. (2009). Effect of zinc on root morphology and anatomical structure of Arabidopsis thaliana seedlings. J. Soil Sci. Plant Nutr., 172(6): 818-826.
Zhao, A., Lu, X., Chen, Z., Tian, X. & Yang, X. (2011). Zinc fertilization methods on zinc absorption and translocation in wheat. J. Agri. Sci., 3(1): 28–35.
Zhou, X., Xu, W., Wang, Z. & Xie, D. (2017). Effects of different Zn supply levels on physiological parameters, seed Zn concentration and root cell ultrastructure in three different genotypes of Brassica species. Inter. J. Agri. & Biol., 19(2): 282-290.