Influences on the Kernel Quality of Maize under Elevated Carbon Dioxide Exposure
Main Article Content
Abstract
Anthropogenic activities have increased atmospheric carbon dioxide (CO2) levels for the past few decades and continue to increase. Carbon dioxide is a greenhouse gas and escalating CO2 has a far-reaching impact on agroecosystem productivity. Physiological features like stomatal conductance, photosynthesis rate, RuBisCO carboxylation efficiency, and growth attributes typically show an improvement along with alterations found in the seed quality of major crops. The present study assessed the influences of elevated CO2 on the kernel quality of a maize cultivar DHM117 using OTCs under field conditions. The setup included ambient CO2 [ACO2] which served as control and elevated CO2 [ECO2] (700 ppm±30). The quality analyses showed noteworthy changes in various nutritional parameters under elevated levels of CO2. Total soluble sugars and starch contents in grains increased due to ECO2. In contrast, protein, total free amino acids and essential amino acids like tryptophan and lysine content declined in the grains of ECO2. Moreover, many nutrient elements like Na, K, Cu, Fe, Ni, and Zn were found to be reduced under CO2 enrichment while Ca, Mg, and Mn values declined. Elevated CO2 treatments resulted in the unsaturation of oil with a reduction in saturated fatty acid content. Hence elevated CO2 enhanced the starch value in maize kernel which is a positive attribute for a cereal plant, however, a reduction in essential amino acids tryptophan, lysine and a few nutrient elements will compromise the nutritional value of maize.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abebe, A., Pathak, H., Singh, S. D., Bhatia, A., Harit, R. C., & Kumar, V. (2016). Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north–west India. Agric. Ecosys. Environ., 218: 66-72.
Ainsworth, E. A., Lemonnier, P., & Wedow, J. M. (2020). The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol., 22: 5-11.
Ainsworth, E. A., Rogers, A., Vodkin, L. O., Walter, A., & Schurr, U. (2006). The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol., 142: 135-147.
Allen, S.E., Grimshaw, H.M., Rowland, A.P., Chemical analysis. In: Moore, P.D., Chapman, S.B. (Eds.), Method in Plant Ecology. Blackwell Scientific Publication, Oxford, London, pp. 285-344, 1986.
Batten, G. D. (1994). Concentrations of elements in wheat grains grown in Australia, North America, and the United Kingdom. Aust. J. Exp. Agric., 34: 51-56.
Bell, J.N.B., Ashmore, M.R. (1986). Design and construction of open top chambers and methods of filtration (equipment and cost). In Proceedings of II European open top chambers workshop. Brussels: Freiburg, CEC
Bishop, K. A., Leakey, A. D., & Ainsworth, E. A. (2014). How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Secur., 3: 33-45.
Broberg, M. C., Högy, P., & Pleijel, H. (2017). CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy, 7: 32.
Burkey, K. O., Booker, F. L., Pursley, W. A., & Heagle, A. S. (2007). Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci., 47: 1488-1497.
Covington, M.B. (2004). Omega-3 fatty acids. Atlantic, 1, 2.
De Souza, A. P., Gaspar, M., Da Silva, E. A., Ulian, E. C., Waclawovsky, A. J., Nishiyama Jr, M. Y., ... & Buckeridge, M. S. (2008). Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ., 31: 1116-1127.
Delpanque, B. (2000). Intéret nutritionnel des tournesols. In Proceedings of XV international sunflower conference, Toulouse (Vol. 1, pp. 15-16).
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
Fangmeier, A., Chrost, B., Högy, P., & Krupinska, K. (2000). CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. Environ. Exp. Bot., 44: 151-164.
Fernando, N., Panozzo, J., Tausz, M., Norton, R. M., Neumann, N., Fitzgerald, G. J., & Seneweera, S. (2014). Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agric. Ecosys. Environ., 185: 24-33.
Grundy, S. M. (1986). Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N. Engl. J. Med., 314: 745-748.
Herbart, D., Philipps, P. J., & Strange, R. E. (1971). Estimation of reducing sugars. Method Microbiol., 10: 209-344.
Högy, P., & Fangmeier, A. (2009). Atmospheric CO2 enrichment affects potatoes: 2. Tuber quality traits. Eur. J. Agron., 30: 85-94.
Högy, P., Zörb, C., Langenkämper, G., Betsche, T., & Fangmeier, A. (2009). Atmospheric CO2 enrichment changes the wheat grain proteome. J. Cereal Sci., 50: 248-254.
IPCC Climate Change (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2007
Jackson, M. (1958). Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ, 498: 183-204.
Loladze, I. (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?. Trends Ecol. Evol., 17: 457-461.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. boil. Chem., 193: 265-275.
Maurya, V. K., Gupta, S. K., Sharma, M., Majumder, B., Deeba, F., Pandey, N., & Pandey, V. (2020). Proteomic changes may lead to yield alteration in maize under carbon dioxide enriched condition. 3 Biotech, 10: 1-24.
McDonald, E. P., Erickson, J. E., & Kruger, E. L. (2002). Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?. Funct. Plant Biol., 29: 1115-1120.
Mishra, A. K., Gupta, G. S., Singh, A. A., Agrawal, S. B., & Tiwari, S. (2024). Can fertilization OF CO2 heal the ozone-injured agroecosystems?. Atmos. Pollut. Res., 102046.
Mishra, A. K., Rai, R., & Agrawal, S. B. (2013). Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crops Res., 145: 21-32.
Moore, S., Stein, W.H. (1948) In: Colowick SP, Kaplan ND (Eds.), Methods Enzymol, 3. Academic Press, New York, p. 468.
Naqvi, S. F., Khan, I. H., & Javaid, A. (2020). Hexane soluble bioactive components of Chenopodium murale stem. Pak J. Weed Sci. Res., 26: 425.
Pal, M., Chaturvedi, A. K., Pandey, S. K., Bahuguna, R. N., Khetarpal, S., & Anand, A. (2014). Rising atmospheric CO 2 may affect oil quality and seed yield of sunflower (Helianthus annus L.). Acta physiol. Plant., 36: 2853-2861.
Pal, M., Rao, L. S., Jain, V., Srivastava, A. C., Pandey, R., Raj, A., & Singh, K. P. (2005). Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biol. Plant., 49: 467-470.
Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., ... & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change., 10: 3-6.
Poorter, H., Van Berkel, Y., Baxter, R., Den Hertog, J., Dijkstra, P., Gifford, R. M., ... & Wong, S. C. (1997). The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ., 20: 472-482.
Reddy, A. R., Rasineni, G. K., & Raghavendra, A. S. (2010). The impact of global elevated CO₂ concentration on photosynthesis and plant productivity. Curr Sci., 46-57.
Silva, R. G. D., Alves, R. D. C., & Zingaretti, S. M. (2020). Increased [CO2] causes changes in physiological and genetic responses in C4 crops: A brief review. Plants, 9: 1567.
Singh, A. A., Agrawal, S. B., Shahi, J. P., & Agrawal, M. (2019). Yield and kernel nutritional quality in normal maize and quality protein maize cultivars exposed to ozone. J. Sci. Food Agric., 99: 2205-2214.
Singh, A. A., Ghosh, A., Pandey, B., Agrawal, M., & Agrawal, S. B. (2023). Unravelling the ozone toxicity in Zea mays L.(C4 plant) under the elevated level of CO2 fertilization. Trop. Ecol., 64: 739-755.
Singh, S., Bhatia, A., Tomer, R., Kumar, V., Singh, B., & Singh, S. D. (2013). Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Environ. Monit. Assess., 185: 6517-6529.
Tan, C. P., & Man, Y. C. (1999). Differential scanning calorimetric analysis for monitoring the oxidation of heated oils. Food Chem., 67: 177-184.
Taub, D. R., Miller, B., & Allen, H. (2008). Effects of elevated CO2 on the protein concentration of food crops: a meta‐analysis. Glob. Change Biol., 14: 565-575.
Tripathi, R., & Agrawal, S. B. (2012). Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. Ecotoxicol. Environ. Saf., 85: 1-12.
Uprety, D. C., Abrol, Y. P., Bansal, A. K., & Mishra, R. S. (1996). Comparative study on the effect of elevated CO2 in mungbean and maize cultivars.
Uprety, D. C., Bisht, B. S., Dwivedi, N., Saxena, D. C., Mohan, R., Raj, A., ... & Singh, D. (2007). Comparison between Open Top Chamber (OTC) and Free Air CO2 Enrichment (FACE) Technologies to study the response of rice cultivars to elevated CO2. Physiol. Mol. Biol. Plants, 13: 259-2266.
Uprety, D. C., Sen, S., & Dwivedi, N. (2010). Rising atmospheric carbon dioxide on grain quality in crop plants. Physiol. Mol. Biol. Plants, 16: 215-227.
Villegas, E., Ortega Martinez, E. I., & Bauer, R. (1984). Chemical methods used at CIMMYT for determining protein quality in cereal grains. CIMMYT.
Wang, N., Shi, L., Tian, F., Ning, H., Wu, X., Long, Y., & Meng, J. (2010). Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC plant biol. 10: 1-11.
Xu, Z., Jiang, Y., & Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci., 6: 701.
Yadav, A., Bhatia, A., Yadav, S., Singh, A., Tomer, R., Harit, R., ... & Singh, B. (2021). Growth, yield and quality of maize under ozone and carbon dioxide interaction in North West India. Aerosol Air Qual. Res., 21: 200194.