Prey-Predator Relationships in Ladybird Beetles and Biological Control of Insect Pests

Main Article Content

Bhupendra Kumar
Omkar*

Abstract

Members of family Coccinellidae, commonly known as ladybirds, are predaceous insects that are polyphagous in nature. Their prey range is categorised as essential, alternative or rejected. Ladybirds fed essential prey survive better as larvae and are more fecund as adults, whereas those fed on alternate prey are only able to survive without growth and reproduction. Rejected prey species are unpalatable due to their intensive/ aposematic colourations and/ or presence of certain allelochemicals. Consequently, they are rejected even after encounters. Certain prey species are even harmful to ladybirds, causing their mortality, and are termed as toxic prey species. Ladybirds accept some prey species that are not adequate and worsen their life-history parameters, although they are not toxic and are considered ‘problematic prey’. While the prey of ladybirds is classified as essential, alternative, rejected and toxic, ladybirds prefer essential prey to perform their best in terms of egg maturation, oviposition and development. However, numerous other factors may affect the prey preferences of ladybirds, and include: (i) prey species, (ii) prey abundance, (iii) morphology, mobility and defence of prey, (iv) learning ability, memory, morphological character and previous feeding experience of predator, (v) environmental factors (temperature and photoperiod), and (vi) genetic factors. While ladybirds locate their prey by extensive search, but switch to intensive search once the feeding of prey initiates. If no further prey are captured, these predators gradually change their prey search mode from intensive to extensive again. During both extensive and intensive searches, ladybirds sense both environmental and inner cues that orientate them toward their prey. However, both abiotic (temperature, humidity, light intensity) and biotic factors (prey, other predators and their interactions) affect the searching behaviour of ladybirds by modifying their rate of movement. Thus, the biocontrol programmes can only be benefitted if all such factors that affect prey-predator relationships in Coccinellidae are fully explored prior to the selection of ladybird species for their mass multiplication in laboratories.

Article Details

How to Cite
Kumar, B., & Omkar. (2025). Prey-Predator Relationships in Ladybird Beetles and Biological Control of Insect Pests. Journal of Applied Bioscience, 51(1), 1–36. Retrieved from https://9vom.in/journals/index.php/joab/article/view/787
Section
Review Article

References

Abdollahi, A.G., Afshari, A., Baniameri, V., Dadpour, H., Asadeh, G. & Yazdanian, M. (2010). Functional response of fourth larval instars and female adults of Cryptolaemus montrouzieri Mulsant (Col.: Coccinellidae) to citrus mealybug, Planococcus citri (Risso) (Hom.: Pseudococcidae) in laboratory conditions. Proceedings of 19th Iranian Plant Protection Congress, 1-69.

Acar, E.B., Medina, J.C., Lee, M.L., & Booth, G.M. (2001). Olfactory behavior of convergent lady beetles (Coleoptera: Coccinellidae) to alarm pheromone of green peach aphid (Hemiptera: Aphididae). The Canadian Entomologist, 133(3), 389-397.

Agarwala, B.K., & Bhowmik, P.J. (2011). Effect of resource gradient on age and size at maturity and their influence on early‐life fecundity in the predatory Asian lady beetle, Harmonia axyridis. Entomologia Experimentalis et Applicata, 141(2): 97-102.

Agarwala, B.K. & Dixon, A.F.G. (1992). Laboratory study of cannibalism and interspecific predation in ladybirds. Ecological Entomology, 17: 303-309.

Agarwala, B.K., Bardhanroy, P., Yasuda, H. & Takizawa, T. (2001). Prey consumption and oviposition in aphidophagous predator Menochilus sexmaculatus (Coleoptera: Coccinellidae) in relation to prey density and adult size. Environmental Entomology, 30: 1182-1187.

Agarwala, B.K., Singh, T.K., Lokeshwari, R.K. & Sharmila, M. (2009). Functional responseand reproductive attributes of the aphidophagous ladybird beetle, Harmoniadimidiate (F.) in oak trees of sericultural importance. Journal of Asia Pacific Entomology, 12:179–182.

Agarwala, B.K., Yasuda, H. & Sato, S. (2008). Life history response of a predatory ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) to food stress. Applied Entomology and Zoology, 43 (2): 183-189.

Al Abassi, S., Birkett, M.A., Pettersson, J., Pickett, J.A., Wadhams, L.J. & Woodcock, C.M. (2000). Responseof the seven-spot ladybird to an aphid alarm pheromoneand an alarm pheromone inhibitor is mediated by pairedolfactory cells. Journal of Chemical Ecology, 26: 1765–1771.

Allan, J.D., Flecker, A.S. & McClintock, N.L. (1987). Prey preference of stoneflies: Sedentary vs mobile prey. Oikos, 49:323–331.

Allawi, T.F. (2006). Biological and ecological studies on Scymnus syriacus and Scymnus levaillanti (coleoptera: coccinellidae). European Journal of Entomology, 103: 501-503.

Al-Zyoud, F.A. & Sengonca, C. (2004). Prey consumption preferencesof Serangium parcesetosum Sicard (Col., Coccinellidae) for different prey stages, species and parasitized prey. Journal of Pest Science, 77: 197–204.

Anderson, D.R, Link, W.A, Johnson, D.H. & Burnham, K.P. (2001).Suggestions for presenting the results of data analyses. Journal of Wildlife Management, 65: 373–378.

Atlihan, R. & Chi, H. (2008). Temperature-dependent development and demography of Scymnus subvillosus (Coleoptera: Coccinellidae) reared on Hyalopterus pruni (Homoptera: Aphididae). Journal of Economic Entomology, 101: 325-333.

Atlihan, R. & Guldal, H. (2009). Prey density-dependent feeding activity and life history of Scymnus subvillosus. Phytoparasitica, 37: 35-41.

Atwal, A.S. & Sethi S.L. (1963). Biochemical basis for the food preference of a predator beetle.Current Science, 32: 511-512.

Auster, F. & Schafer, J. (1956). Arzneipflanzen (7. Lieferung),Veb Georg Thieme, Leipzig.

Ba M'Hamed, T. & Chemseddine, M. (2001). Assessment of temperature effects on the development and fecundity of Pullus mediterraneus (Col., Coccinellidae) and consumption of Saissetia oleae eggs (Hom., Coccoida). Journal of Applied Entomology, 125: 527-531.

Banks, C.J. (1957). The behaviour of individual coccinellid larvae on plants. British Journal of Animal Behaviour, 5: 12-24.

Barbier, P., Ferran, A., Lelannic, J. & Le Strat, A.M. (1989). Ultrastructure et function des organs sensoriels des palpes maxillaries de Semiadalia undecimnotata Schn. (Col., Coccinellidae). Bulletin de la Societe Zoologique de France, 114: 120-128.

Bayoumy, M.H. & Michaud, J.P. (2012). Parasitism interacts with mutual interference to limit foraging efficiency in larvae of Nephus includens (Coleoptera: Coccinellidae). Biological control, 62(2): 120-126.

Bayoumy, M.H. (2011). Functional response of the aphelinid parasitoid, Aphytis diaspidis: effect of host scale species, Diaspidiotus perniciosus and Hemiberlesia lataniae. Acta Phytopathologica Entomologica Hungarica, 46(1): 101-113.

Berkvens, N., Bale, J.S., Berkvens, D., Tirry, L. & De Clercq, P. (2010). Cold tolerance of the harlequin ladybird in Europe. Journal of Insect Physiology, 56: 438–444.

Berkvens, N., Bonte, J., Berkevens, D., Deforce, K., Tirry, L. & De Clercq, P. (2008). Pollen as an alternative food for Harmonia axyridis. In: From Biological Control to invasion: The ladybird Harmonia axyridis as a model species, pp. 201-210.

Bertram, D.F. & Strathmann, R.R. (1998). Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology, 79: 315-327.

Bista, M. & Omkar (2013). Effects of body size and prey quality on the reproductive attributes of two aphidophagous Coccinellidae (Coleoptera) species. The Canadian Entomologist, 145(5): 566-576.

Bista, M. & Omkar (2014). Consumption, developmental and reproductive attributes of two con-generic ladybird predators under variable prey supply. Biological Control, 74: 36-44.

Bista, M., Mishra, G. & Omkar (2012). Influence of crowding and diet on the development and survival of the ladybird Brumoides suturalis (Coleoptera: Coccinellidae) reared on two aphid species. International Journal of Tropical Insect Science, 1-6.

Bjorksten, T.A. & Hoffmann, A.A. (1995).Effects of pre-adult and adult experience on host acceptance in choice and non-choice tests in two strains of Trichogramma. Entomologia Experimentalis et Applicata, 76: 49–58.

Blackenhorn, W.U. (2000). The evolution of body size: what keeps organisms small? Quarterly Review of Biology, 75: 385-407.

Blackman, R.L. (1967). Selection of aphid prey by Adalia bipunctata L. and Coccinella septempunctata L. Annals of Applied Biology, 59: 331-338.

Boivin, G., Fauvergue, X. & Wajnberg, E. (2004). Optimal patch residence time in egg parasitoids: innate versus learned estimate of patch quality. Oecologia, 138: 640–647.

Boivin, G., Roger, C., Coderre, D. & Wajnberg, E. (2010). Learningaffects prey selection in larvae of a generalist coccinellidpredator. Entomologia Experimentalis et Applicata, 135: 48–55.

Bond, A.B. (1980). Optimal foraging in a uniform habitat: the search mechanism of the green lacewing. Animal Behavior, 28: 10-19.

Bonduriansky, R.A. & Head, M. (2007). Maternal and paternal condition effects onoffspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). Journal of Evolutionary Biology, 20: 2379–2388.

Borges, I., Soares, A.O., Magro, A. & Hemptinne, J.L. (2011). Prey availability in time & space is adriving force in life history evolution of predatory insects. Evolutionary Ecology, 25: 1307-1319.

Bressendorff, B.B. & Toft, S. (2011). Dome-shaped functional response induced by nutrient imbalance of the prey. Biological Letters, 7(4): 517-520.

Britto, E.P.J, Gondim, M.G.C., Torres, J.B., Fiaboe, K.K.M., Moraes, G.J. & Knapp, M. (2009). Predation and reproductive output of the ladybird beetle Stethorus tridens preying on tomato red spider mite Tetranychus evansi. BioControl, 54: 363-368.

Brodsky, L.M. & Barlow, C.A. (1986). Escape responses ofthe pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae): influence of predator type and temperature.Canadian Journal of Zoology, 64: 937–939.

Butin, E., Elkinton, J., Havill, N., & Montgomery, M. (2003). Comparison of numerical response and predation effects of two coccinellid species on hemlock woolly adelgid (Homoptera: Adelgidae). Journal of Economic Entomology, 96(3): 763-767.

Canovai, R., Benelli, G., Ceragioli, T., Lucchi, A., & Canale, A. (2019). Prey selection behaviour in the multicoloured Asian ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Applied Entomology and Zoology, 54: 213-222.

Carter, M.C. & Dixon, A.F.G. (1982). Habitat quality and theforaging behaviour of coccinellid larvae. Journal of Animal Ecology, 51: 865–878.

Carter, M.C. & Dixon, A.F.G. (1984). Honeydew: an arrestant stimulus for coccinellids. Ecological Entomology, 9: 350-383.

Carter, M.C., Sutherland, D. & Dixon, (1984). Plant structure and the searching efficiency of coccinellid larvae. Oecologia, 63: 394-397.

Castro-Guedes, C.F., de Almeida, L.M., Penteado, S.D.R.C., & Moura, M.O. (2016). Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Revista Brasileira de Entomologia, 60(3): 260-266.

Casula, P., Wilby, A. & Thomas, M.B. (2006). Understanding biodiversity effects on prey in multi-enemy systems. Ecological Letters, 9: 995–1004.

Chandler, A.E.F. (1969). Locomotory behaviour of first instar larvae of aphidophagous Syrphidae (Dipt.) after contact with aphids. Animal Behavior, 17: 676-678.

Chaudhary, D.D., Kumar, B., Mishra, G. & Omkar (2015). Resource partitioning in a ladybird, Menochilus sexmaculatus: function of body size and prey density. Bulletin of Entomological Research, 105: 121– 128.

Chunju, A., Xiaodong, F., Wenfeng, C. & Zhangwu, Z. (2012). The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum. Archives of Insect Biochemistry and Physiology, 79(4-5): 198-206.

Costa, G.C. (2009). Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology, 90(7): 2014-2019.

Costamagna, A.C., Landis, D.A. & Difonzo, C.D. (2007). Suppression of soybean aphid by generalist predators results in a trophic cascade in soybeans. Ecological Applications, 17(2): 441-451.

Cottrell, T.E. (2005). Predation and cannibalism of lady beetle eggs by adult lady beetles. Biological Control, 34: 159-164.

Crookes, S., DeRoy, E.M., Dick, J.T., & MacIsaac, H.J. (2019). Comparative functional responses of introduced and native ladybird beetles track ecological impact through predation and competition. Biological Invasions, 21: 519-529.

Curio, E. (1976). The Ethology of Predation.Berlin, Springer-Verlag.249 pp.

Damos, P. & Savopoulou-Soultani, M. (2012). Temperature driven models for insect development and vital thermal requirements. Psyche, 1-13.

Danks, H.V. (1987). Insect Dormancy: an Ecological Perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, 439 pp.

Danks, H.V. (1991). Winter habitats and ecological adaptations for winter survival. In: Lee, R.E., Jr & Denlinger, D.L. (eds): Insects at Low Temperatures. Chapman and Hall, New York, pp. 231–259.

Danks, H.V. (2007). The elements of seasonal adaptations in insects. The Canadian Entomologist, 139: 1-44.

Das, B.C., & Dixon, A.F.G. (2011). Assessment of patch quality by aphidophagous ladybirds: laboratory study on the minimum density of aphids required for oviposition. European Journal of Environmental Sciences, 1: https://doi.org/10.14712/23361964.2015.66

Dauphin, G., Coquillard, P., Colazza, S., Peri, E. & Wajnberg, E. (2009). Host kairomone learning and foraging success in an egg parasitoid: a simulation model. Ecological Entomology, 34: 193–203.

Dejean, A., Gibernau, M., Lauga, J. & Orivel, J. (2003). Coccinellid learning during capture of alternative prey. Journal of Insect Behavior, 16: 859–864.

Dell, A.I., Pawar, S. & Savage, V.M. (2013). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83(1): 70-84.

Denis, D., Pierre, J.S., van Baaren, J. & van Alphen, J.J.M. (2011). How temperature and habitat quality affect parasitoid lifetime reproductive success-A simulation study. Ecological Modelling, 222: 1604-1613.

Dixon, A.F.G. (1958). The escape response shown by certain aphids to the presence of the coccinellid Adalia bipunctata L. Transactions of the Royal Entomological Society London, 110: 319-334.

Dixon, A.F.G., & Agarwala, B.K. (2002). Triangular fecundity function and ageing in ladybird beetles. Ecological Entomology, 27: 433-440.

Dixon, A.F.G. & Guo, Y. (1993). Egg and cluster size in ladybirdbeetles (Coleoptera: Coccinellidae): The direct andindirect effects of aphid abundance. European Journal of Entomology, 90: 457–463.

Dixon, A.F.G. (1959). An experimental study of the searchingbehaviour of the predatory coccinellid beetle Adalia decempunctata (L.). Journal of Animal Ecology, 28: 259-281.

Dixon, A.F.G. (2000). Insect Predator-Prey Dynamics, Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge, 257 pp.

Dixon, A.F.G. (2007). Body size and resource partitioningin ladybirds.Population Ecology, 49: 45–50.

Dixon, A.F.G., Agarwala, B.K. & Hemptinne, J.L. (2011). Fast-slow continuum in the life history parameters of ladybirds revisited. European Journal of Environmental Science, 1: 61-66.

Dixon, A.F.G., Hemptinne, J.L. & Kindlmann, P. (1997). Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga, 42(1-2), 71-83.

Dmitriew, C. & Rowe, L. (2011). The effects of larval nutrition on reproductive performance in a food-limited adult environment.PLoSONE 6(3): e17399. doi:10.1371/journal.pone.0017399.

Dmitriew, C. & Rowe, L. (2007). Effects of earlyresource limitation and compensatory growth on lifetime fitness in the ladybird beetles (Harmoniaaxyridis). Journal of Evolutionary Biology, 20: 1298-1310.

Downing, G. & Litvak, M.K. (2002). Effects of light intensity, spectral composition and photoperiod on development and hatching of haddock (Melanogrammus aeglefinus) embryos. Aquaculture, 213 (1-4): 265-278.

Dreyer, B.S., Neuenschwander, P., Bouyjou, B., Baumgärtner, J. & Dorn, S. (1997). The influence of temperature on the life table of Hyperaspis notata. Entomologia Experimentalis et Applicata, 84: 85–92.

Drost, Y.C., Lewis, W.J. & Tumlinson, J.H. (1988). Beneficial arthropod behaviour mediated by airborne semiochemicals. V. Influence of rearing method, host plant and adult experience on host searching behaviour of Microlitis croceipes (Cresson) a larval parasitoid of Heliothis sp. Journal of Chemical Ecology, 14: 1607-1616.

Ducatti, R.D.B., Ugine, T.A. & Losey, J. (2017). Interactions of the Asian Lady Beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and the North American Native Lady Beetle, Coccinella novemnotata (Coleoptera: Coccinellidae): Prospects for Recovery Post-Decline. Environmental Entomology, 46(1): 21-29.

Dukas, R. & Bernays, E.A. (2000). Learning improves growth rate in grasshoppers. Proceedings of the National Academy of Sciences of the USA, 97: 2637–2640.

Dukas, R. (2008). Evolutionary biology of insect learning.Annual Review of Entomology,53: 145-160.

Eliopoulos, P.A., Kontodimas, D.C. & Stathas, G.J. (2010). Temperature-dependent development of Chilocorus bipustulatus (Coleoptera: Coccinellidae). Environmental Entomology, 39: 1352-1358.

Engelmann, F. (1970). The physiology of insect reproduction. Pergamon, Oxford. 307 pp.

Ettifouri, M. & Ferran, A. (1993). Influence of larval rearing diet on the intensive searching behaviour of Harmonia axyridis larvae. Entomophaga, 38: 51-59.

Evans, E.W. & Dixon, A.F.G. (1986). Cues for oviposition by ladybird beetles (Coccinellidae): response to aphids. Journal of Animal Ecology, 1027-1034.

Evans, E.W. (2000). Egg production in response to combinedalternative foods by the predator Coccinella transversalis.Entomologia Experimentalis et Applicata, 94: 141–147.

Evans, E.W. (2003). Searching and reproductive behaviour offemale aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. European Journal of Entomology, 100: 1–10.

Evans, E.W. (2008). Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. European Journal of Entomology, 105: 369-380.

Evans, E.W. (2009). Lady beetles as predators of insects other than Hemiptera. Biological Control, 51: 255-267.

Eveleigh, E.S. & Chant, D.A. (1982). Experimental studies on acarina predator-prey interactions: the effect of predator density on prey consumption, predator searching efficiency and the functional response to prey density (Acarina, Phytoseiidae). Canadian Journal of Zoology, 60: 611-629.

Farina, W.M., Gruter, C. & Diaz, P.C. (2005). Social learning of floral odours inside the honeybee hive. Proceedings of the Royal Society of London Series B, 272: 1923–1928.

Ferran, A. & Deconchat, M. (1992). Exploration of wheat leaves by Coccinella septempunctata L. (Col., Coccinellidae). Journal of Insect Behavior, 5: 147-159.

Ferran, A. & Dixon, A.F.G. (1993). Foraging behaviour of ladybird larvae (Coleoptera: Coccinellidae). European Journal of Entomology, 90: 383-402.

Ferran, A., Iperti, G., Lapchin, L. & Rabasse, J.M. (1991). La localization, le comportement et les relations “proie-predateur” chez Coccinella septempunctata L. dans un champ de ble. Entomophaga, 36: 213-225.

Ferrer, A., Dixon, A.F.G. & Hemptinne, J.L. (2008). Prey preference ofladybird larvae and its impact on larval mortality, some life-historytraits of adults and female fitness. Bulletin of Insectology, 61: 5-10.

Ferrero, D., Lemon, J., Fluegge, D., Pashkovski, S., Korzan, W., Datta, S., Spehr, M., Fendt, M. & Liberles, S. (2011). Detection and avoidance of a carnivore odor by prey. Proceedings of the National Academy of Sciences USA, 108: 11235–11240.

Fiaboe, K.K.M., Gondim, M.G.C. Jr., de Moraes, G.J., Ogol, C.K.P.O. & Knapp, M. (2007). Bionomics of the acarophagousladybird beetle Stethorus tridens fed Tetranychus evansi. Journal of Applied Entomology, 131: 355-361.

Finlayson, C.J., Alyokhin, A.V., Gross, S. & Porter, E.W. (2010). Differential consumption of four aphid species by four lady beetle species. Insect Science, 10 (31): 1-10.

Francis, F., Lognay, G. and Haubruge, E. (2004). Olfactory responses to aphid and host plant volatile releases: (E)-β-farnesene an effective kairomone for the predator Adalia bipunctata. Journal of Chemical Ecology, 30: 741–755.

Frechette, B., Dixon, A.F.G., Alauzet, C., Boughenou, N. & Hemptinne, J.L. (2006). Should aphidophagous ladybirds bereluctant to lay eggs in the presence of unsuitable prey? Entomologia Experimentalis et Applicata, 118: 121–127.

Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M. & Brown, J.H. (2002).Effects of size and temperature on developmental time. Nature, 417: 70-73.

Giurfa, M. (2013). Cognition with few neurons: higher-order learning in insects. Trends in Neurosciences, 36: 285–294.

Giurfa, M. (2015). Learning and cognition in insects. WIRES Cognitive Science, 6(4): 383-395.

Golizadeh, A. & Jafari-Behi, V. (2012). Biological traits and life table parameters of variegated ladybeetle, Hippodamia variegata (Coleoptera: Coccinellidae) on three aphid species. Applied Entomology and Zoology, 47: 199-205.

Guershon, M. & Gerling, D. (2006). Effects of plant and prey characteristics on the predatory behavior of Delphastus catalinae. Entomologia Experimentalis et Applicata, 121: 15–21.

Guillette, L.M., Hollis, K.L. & Markarian, A. (2009). Learning in a sedentary insect predator: antlions (Neuroptera: Myrmeleontidae) anticipate a long wait. Behavioural Processes, 80: 224–232.

Gupta, A.K., Srivastava, S., Mishra, G., Singh, K. & Omkar (2006). Survival, development and life table of two con-generic ladybirds in aphid guilds. Insect Science, 13 (2): 119-126.

Gupta, G., & Kumar, N.R. (2017). Growth and development of ladybird beetle Coccinella septempunctata L.(Coleoptera: Coccinellidae), on plant and animal based protein diets. Journal of Asia-Pacific Entomology, 20(3): 959-963.

Gupta, R.K., Pervez, A., Guroo, M.A. & Srivastava, K. (2012). Stage specific functional response of an aphidophagous ladybird, Coccinella septempunctata (Coleoptera: Coccinellidae), to two aphid species. International Journal of Tropical Insect Science, 32(3): 136-141.

Hamasaki, K. & Matsui, M. (2006). Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), reared on an alternative diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Applied Entomologie and Zoologie, 41: 233-237.

Hao, Z., Agha Kouchak, A. & Phillips, T.J. (2013).Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8(3): 034014.

Harmon, J.P., Losey, J.E. & Ives, A.R. (1998).The roleof vision and color in the close proximity foraging behaviorof four coccinellid species. Oecologia, 115: 287–292.

Hassell, M.P. & Southwood, T.R.E. (1978). Foraging strategies of insects.Annuual Review of Ecology System, 9: 75-98.

Hatano, E., Kunert, G., Michaud, J.P. & Weisser, W.W. (2008). Chemical cues mediating aphid location by natural enemies. European Journal of Entomology, 105: 797–806.

Hattingh, V. & Samways, M.J. (1995). Visual and olfactory location of biotopes, prey patches, and individual prey by the ladybeetle Chilocorus nigritus. Entomologia Experimentalis et Applicata, 75: 87-/98.

Haye, T., Mason, P.G., Dosdall, L.M. & Kuhlmann, U. (2010). Mortality factors affecting the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), in its area of origin: A lifetable analysis. Biological Control, 54(3): 331-341.

Hemptinne, J.L. & Dixon, A.F.G. (2000). Defence, oviposition and sex: semiochemical parsimony in two species of ladybird beetles (Coleoptera: Coccinellidae)? A short review.European Journal Entomology, 97: 443-447.

Hemptinne, J.L., Dixon, A.F.G. & Coffin, J. (1992). Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia, 90: 238-245.

Hemptinne, J.L., Doumbia, M. & Dixon, A.F.G. (2000a). Assessment of patch quality by ladybirds: role of aphid and plant phenology. Journal of Insect Behavior, 13: 353-359.

Hemptinne, J.L., Gaudin, M., Dixon, A.F.G. & Lognay, J. (2000b). Social feeding in ladybird beetles: adaptive significance and mechanism. Chemoecology, 10: 149–152.

Hemptinne, J.L., Lognay, G., Doumbia, M. & Dixon, A.F.G. (2001). Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology, 11: 43–47.

Hill, W.G. (1982). Predictions of response to artificial selection from new mutations. Genetics Research, 40(3): 255-278.

Hirvonen, H., Ranta, E., Rita, H. & Peuhkuri, N. (1999). Significance of memory properties in prey choice decisions.Ecological Modelling, 15: 177–189.

Hodek, I. & Evans, E.W. (2012). Food relationships In: Hodek I, van Emden HF, Honěk A. (Eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, Chichester, 141–274.

Hodek, I. & Honek, A. (1996). Ecology of Coccinellidae.Kluwer Academic Publishers Dordrecht Boston London, 464 pp.

Hodek, I. (1956). The influence of Aphis sambuci L. as prey of the ladybird beetle Coccinella septempunctata L. Vestnik Zoologii, 20: 62-74.

Hodek, I. (1962). Essential and alternative food in insects.Proceedings of11th International Congress on Entomology, Vienna, 2: 696-697.

Hodek, I. (1973). Biology of Coccinellidae.Academia, Prague and Junk, The Hague 260 pp.

Hodek, I., Van Emden, H.F. & Honek, A. (2012).Ecology and behavior of the ladybird beetles (Coccinellidae). Blackwell Publishing limited, UK, 600 pp.

Holling, C.S. (1959). The components of predation as revealed by a study of small mammal predation of the European Pine sawfly. The Canadian Entomologist, 91: 293-332.

Holling, C.S. (1959a). Some characteristics ofsimple types of predation and parasitism.The Canadian Entomologist, 91(7): 385-398.

Holling, C.S. (1959b). The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly1. The Canadian Entomologist, 91(5): 293-320.

Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation.Memoirs of theEntomological Society of Canada, 45: 3-60.

Honek, A. (1983). Factors affecting the distribution of larvae of aphid predators (Col., Coccinellidae and Dipt., Syrphidae) in cereal stands. Zeitschrift fur Angewandte Entomologie, 95: 336-345.

Hong, B.M., Binh, T.T.T. & Hang, V.T.T. (2013). Effect of temperature on the life cycle and predatory capacity of ladybird beetle Micraspis discolor Fabricius (Coleoptera: Coccinellidae). Journal of Biology, 35 (1): 37-42.

Hosseini, A., Hosseini, M., Michaud, J.P., Awal, M.M., & Ghadamyari, M. (2019). Life history responses of Hippodamia variegata (Coleoptera: Coccinellidae) to changes in the nutritional content of its prey, Aphis gossypii (Hemiptera: Aphididae), mediated by nitrogen fertilization. Biological Control, 130: 27-33.

Houck, M.A. (1986). Prey preference in Stethorus punctum (Col., Coccinellidae). Environmental Entomology, 15: 967-970.

Houck, M.A. (1991). Time and resource partitioning in Stethorus punctum (Coleoptera: Coccinellidae). Environmental Entomology, 20: 494-497.

Huffaker, C.B., Messenger, P.S. & Debach, P. (1971). The natural enemy component in natural control and the theory of biological control. In Huffaker C.B. (ed.): Biological control. Plenum Press, New York pp. 16-67.

Hukusima, S. & Kamei, M. (1970). Effects of various species of aphids as food on development, fecundity and longevity of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Research Bulletin of the Faculty of Agriculture, Gifu University, 29: 53-66.

Iperti, G. (1966). Comportement naturel des coccinelles aphidiphages du sud-est de la France.Leur type de specificite, leur action predatrice sur Aphis fabae Scop.Entomophaga 11: 203-210.

Iverson, T. & Harding, S. (2007). Life table parameters affecting the population development of the woolly beech aphid, Phyllaphis fagi. Entomologia Experimentalis et Applicata, 123 (2): 109-117.

Ives, P.M. (1981). Feeding and egg production of two species of coccinellids in the laboratory.The Canadian Entomologist, 113:999–1005.

Jalali, M.A., & Ziaaddini, M. (2017). Effects of host plant morphological features on the functional response of Adalia bipunctata (Coleoptera: Coccinellidae) to Myzus persicae (Hemiptera: Aphididae). International Journal of Pest Management, 63(4): 309-315.

Jalali, M.A., Reitz, S., Mehrnejad, M.R., Ranjbar, F., & Ziaaddini, M. (2019). Food utilization, development, and reproductive performance of Coccinella septempunctata (Coleoptera: Coccinellidae) feeding on an aphid or psylla prey species. Journal of Economic Entomology, 112: 571-576.

Jalali, M.A., Tirry, L. & De Clercq, P. (2010).Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae.BioControl, 55: 261-269.

Jander R.J. 1975: Ecological aspects of spatial orientations. Annual Review of Ecological System, 6: 171-188.

Jankowsky H.D. 1973: Body temperature and energy budget. In Precht H. et al. (eds): Temperature and Life. Springer, Berlin, Heidelberg, New York pp. 87-101.

Jarosík, V., Honek, A. & Dixon, A.F.G. (2002).Developmental rateisomorphy in insects and mites.The American Naturalist, 160: 497-510.

Jeschke, J.M., Kopp, M. & Tollrian, R. (2002). Predator functional responses: discriminating between handling and digesting prey. Ecological Monograph, 72: 95-112.

Johnson, R.A. (1991). Learning, memory, and foraging efficiency in two species of desert seed-harvester ants.Ecology, 72: 1408–1419.

Joshi, S., Ballal, C.R. & Rao, N.S. (1999).Biotic potential of three coccinellid predators on six different aphid hosts.Journal of Entomological Research, 23: 1-7.

Kaddou, I.K. (1960). The feeding behaviour of Hippodamia quinquesignata (Kirby) larvae.The University of California Publications in Entomology, 16: 181-182.

Kairo, M.T.K. & Murphy, S.T. (1995). The life history of Rodolia iceryae Janson (Coleoptera: Coccinellidae) and the potential for use in innoculative releases against Icerya pattersoni Newstead (Homoptera: Margarodidae) on coffee. Journal of Applied Entomology 119: 487–491.

Kalushkov, P. & Hodek, I. (2001). New essential aphid prey for Anatis ocellata and Calvia quatuordecimguttata (Coleoptera: Coccinellidae). Biocontrol Science and Technology,11: 35–39.

Kalushkov, P. & Hodek, I. (2004).The effect ofthirteen species of aphids on some life historyparameters of the ladybird Coccinella septempunctata.Biocontrol, 49: 21-32.

Karami, J.T. & Shishehbor, P. (2012).Host plant effects on the functional response of Stethorus gilvifrons to strawberry spider mites. Biocontrol science and technology, 22(1): 101-110.

Kareiva, P. & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use area restricted search. TheAmerican Naturalist, 130: 233-270.

Kawauchi, S.E. (1985). Comparative studies on the fecundity of three aphidophagous Coccinellids (Coleoptera: Coccinellidae). Japanese Journal of Applied Entomology and Zoology, 29 (33): 203-209.

Kehat, M. (1968). The feeding behaviour of Pharoscymnus numidicus (Coccinellidae) predator of the date palm scale Parlatoria blanchardi. Entomologia Experimentalis et Applicata, 11: 30-42.

Keith, L.B., Todd, A.W., Brand, C.J., Adamcik, R.S. & Rusch, D.H. (1977).An analysis of predation during a cyclic fluctuation of snowshoe hares.In Proceedings of the International Congress of Game Biologists (Vol. 13, pp. 151-175).

Keshavarz, M., Seiedy, M. & Allahyari, H. (2015). Preference of two populations of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) for Aphis fabae and Aphis gossypii (Homoptera: Aphididae). European Journal of Entomology, 112(3): 560-563.

Kesten, U. (1969). Zur Morphologie and Biologie of Anatis ocellata L. (Col., Coccinellidae).Zeitschrift fur Angewandte Entomologie, 63: 412-445.

Khan, I. & Spooner-Hart, R. (2017). Temperature-dependent development of immature stages of predatory ladybird beetle Stethorus vagans (Coleoptera: Coccinellidae) at constant and fluctuating temperatures. Acta Zoologica Academiae Scientiarum Hungaricae, 63(1): 83-96.

Khan, M.R. & Khan, M.R. (2010).The relationship between temperature and the functional response of Coccinella septempunctata (L.) (Coleoptera: Coccinellidae). Pakistan Journal of Zoology, 42(4): 461-466.

Kianpour, R., Fathipour, Y., Kamali, K.& Omkar (2011). Effects of mixed prey on the development and demographic attributes of a generalist predator, Coccinella septempunctata (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 21(4): 435-447.

Kindlmann, P., Dixon, A.F.G. &Dostálková,I. (2001). Role of ageing & temperature in shaping reaction norms and fecundity functions in insects. Journal of Evolutionary Biology, 14: 835–840.

Klingauf, F. (1967).Abwehr and Meidereaktionen von Blattlausen (Aphididae) bei Bedrohung durch Rauber und Parasiten.Zeitschrift fur Angewandte Entomologie, 60: 269-317.

Koch, R.L. & Galvan, T.L. (2008). Bad side of a good beetle: the NorthAmerican experience with Harmonia axyridis. Biocontrol, 53:23-35.

Koch, R.L., Venette, R.C. & Hutchison, W.D. (2005). Influence of alternate prey on predation of monarch butterfly (Lepidoptera: Nymphalidae) larvae by the multicolored Asian lady beetle (Coleoptera: Coccinellidae). EnvironmentalEntomology,34: 410-416.

Krivan, V. & Sirot, E. (2004). Do short-term behaviouralresponses of consumers in tri-trophic food chains persist atthe population time-scale? Evolutionary Ecology Research, 6: 1063–1081.

Kumar, A., Kumar, N., Siddiqui, A. & Tripathi, C.P.M. (1999).Prey–predator relationship between Lipaphis erysimi Kalt.(Hom., Aphididae) and Coccinella septempunctata L (Col.,Coccinellidae). II. Effect of host plants on the functionalresponse of the predator. Journal of Applied Entomology, 123: 591–596.

Kumar, B. & Mishra, G. (2014c). Larval and female footprints as feeding deterrent cues for immature stages of two congeneric ladybird predators (Coleoptera: Coccinellidae). Bulletin of entomological research, 104(5): 652-660.

Kumar, B. & Omkar (2015). Temperature and photoperiod influence prey consumption and utilization by two sympatric Coccinella species (Coleoptera: Coccinellidae) in conspecific and heterospecific combinations. Acta Entomologica Sinica, 58(3): 297-307.

Kumar, B., Bista, M., Mishra, G. and Omkar (2014b). Stage specific consumption and utilization of aphids, conspecific and heterospecific eggs by two species of Coccinella (Coleoptera: Coccinellidae). European Journal of Entomology, 111(3): 363.

Kumar, B., Mishra, G. & Omkar (2015). Prey species modify interactions within two predator conspecific and heterospecific combinations: A case study using two sympatric Coccinella species (Coleoptera: Coccinellidae). Journal of Asia-Pacific Entomology, 18(2): 109-116.

Kumar, B., Mishra, G. and Omkar (2014a). Functional response and predatory interactions in conspecific and heterospecific combinations of two congeneric species (Coleoptera: Coccinellidae). European Journal of Entomology, 111(2): 257-265.

Kumar, B., Pandey, G., Mishra, G. & Omkar (2013). Predatory performance of four aphidophagous ladybirds: a measure of prey suitability. International Journal of Tropical Insect Science, 33(2): 120-126.

Lamana, M.L. & Miller, J.C. (1998). Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, 27: 1001-1005.

Latifian, M. (2017). Foraging and Functional Response of the Predator, Stethorus gilvifrons Mulsant.(Coleoptera: Coccinellidae), Fed on the Date Palm Spider Mite, Oligonychusa frasiaticus McGregor (Acari: Tetranychidae). Egyptian Journal of Biological Pest Control, 27(1): 93.

Lee, J.H. & Kang, T.J. (2004). Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: Aphididae) in the laboratory. Biological Control, 31: 306-310.

Legaspi, J.C. & Legaspi, B.C. (1998). Life history trade-offs in insects, with emphasis on Podisus maculiventris (Heteroptera: Pentatomidae). In: Coll, M. & Ruberson, J.R. (eds): Predatory Heteroptera: Their ecology and use in biological control. Entomological Society of America, Thomas Say Publications in Entomology, Laham, pp. 71-87.

Lewis, W.J., Vet, L.E.M., Tumlinson, J.H., van Lenteren, J.C. & Papaj, D.R. (1990). Variations in parasitoid foraging behavior: essential element of a sound biological control theory. Environmental Entomology, 19: 1183–1193.

Lima, M.S., Melo, J.W.S. & Barros, R. (2017). Alternative food sources for the ladybird Brumoides foudrasii (Mulsant)(Coleoptera: Coccinellidae). Brazilian Journal of Biology, http://dx.doi.org/10.1590/1519-6984.02816.

Logan, J.D., Wolesensky, W. & Joern, A. (2006).Temperature-dependent phenology and predation in arthropod systems.Ecological Modelling, 196: 471-482.

Lopatina, E.B., Balashov, S.V. & Kipyatkov, V.E. (2007).First demonstration of the influence of photoperiod on the thermal requirements for development in insects and in particular the linden-bug, Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae).European Journal of Entomology, 104: 23-31.

Luck, R.F. (1985).Principles of arthropod predation.In: Huffaker, C.B. & Rabb, R.L. (eds): Ecological Entomology. Wiley Interscience, New York, pp. 497-530.

Luker, L.A., Hatle, J.D. & Juliano, S.A. (2002). Reproductive responses to photoperiod by a south Florida population of the grasshopper Romalea microptera (Orthoptera: Romaleidae). Environmental Entomology, 31: 702-707.

Lundgren, J.G. (2009). Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae.Biological Control, 51: 294-305.

Lundgren, J.G. & Weber, D.C. (2010). Changesin digestive rate of a predatory beetle over its larval stage: implications for dietarybreadth. Journal of Insect Physiology, 56: 431-437.

Magro, A., Ducamp, C., Ramon-Portugal, F., Lecompte, E., Crouau-Roy, B., Dixon, A.F.G. & Hemptinne, J.L. (2010) Oviposition deterring infochemicals in ladybirds: the role of phylogeny.Evolutionary Ecology, 24: 251–271.

Magro, A., Tene, J.N., Bastin, N., Dixon, A.F.G. & Hemptinne, J.L. (2007) Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? Chemoecology, 17: 37–45.

Majumder, J. & Agarwala, B.K. (2013).Biology and population dynamics of giant ladybird predator, Anisolemnia dilatata (F.) (Coleoptera: Coccinellidae): a specialized predator of wooly aphids of bamboo plants in northeast India. World Journal of Zoology, 8(1): 55-61.

Malcolm, C.B. (1992). Prey Defence and Predator Foraging. In: Crawley, M.J. (eds): Natural Enemies: The Population Biology of Predators, Parasites and Diseases. Blackwell Scientific Publication, Oxford, UK, pp. 458-475.

Marks, R.J. (1977). Laboratory studies of plant searching behaviour by Coccinella septempunctata L. larvae. Bulletin ofEntomological Research, 67: 235-341.

Maurice, N. & Kumar, A. (2011).Effect of quantity and consumption of food on body weight and development of two species of ladybird beetles.Annals of Plant Protection Sciences, 19(1): 59-62.

Maurice, N.G. & Kumar, A. (2012). Development of two species of ladybird beetles (Coleoptera: Coccinellidae) on aphids as well as conspecific eggs. International Journal of Advance Pharmaceutical and Biological Sciences, 2(4): 272-279.

Meidari, M. & Copland, M.J.W. (1992). Host finding by Cryptolaemus montrouzieri (Col., Coccinellidae) a predator of mealybugs (Hom., Pseudococcidae). Entomophaga, 37: 621-625.

Meisner, M.H., Harmon, J.P. & Anthony, R.I. (2011). Response of coccinellid larvae to conspecific and heterospecific larval tracks: a mechanism that reduces cannibalism and intraguild predation. Environmental Entomology, 40: 103–110.

Michaud, J.P. & Jyoti, J.L. (2007) Repellency of conspecific and heterospecific larval residues to Hippodamia convergens (Coleoptera: Coccinellidae) ovipositing on sorghum plants. European Journal of Entomology, 104: 399–405.

Michaud, J.P. & Jyoti, J.L. (2008). Dietary complementationacross life stages in the polyphagous lady beetle Coleomegillamaculata. Entomologia Experimentalis et Applicata, 126: 40-45.

Michaud, J.P. (2005). On the assessment of prey suitabilityin aphidophagous Coccinellidae.European Journal of Entomology, 102:385-390.

Michaud, J.P. (2012). Coccinellids in biological control. In: Hodek, I., van Emden, H. F., Honek, A. (Eds.), Ecology andBehaviour of the Ladybird Beetles (Coccinellidae). John Wiley, Chichester, UK, pp. 488–519.

Mills, N.J. & Lacan, I. (2004). Ratio dependence in the functionalresponse of insect parasitoids: evidence from Trichogrammaminutum foraging for eggs in small host patches.Ecological Entomology, 29: 208–216.

Mills, N.J. (1979). Adalia bipunctata(L.) as a generalistpredator of aphids.PhD thesis, University East Anglia,Norwich.

Mills, N.J. (1981). Essential and alternative foods for someBritish Coccinellidae (Coleoptera).Entomological Gazette, 32: 197-202.

Mills, N.J. (1982). Satiation and the functional response: a test of a new model. Ecological Entomology, 7 (3): 305-315.

Mishra, G. & Omkar (2005). Influence of components of light on the life attributes of an aphidophagous ladybird, Propylea dissecta (Coleoptera: Coccinellidae). International Journal of Tropical Insect Science, 25(1): 32-38.

Mishra, G., Kumar, B., Shahid, M. & Singh, D. (2011). Evaluation of four co-occurring ladybirds for use as biocontrol agents of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Biocontrol Science and Technology, 21: 991-997.

Mishra, G., Omkar, Kumar, B. & Pandey, G. (2012a). Stage and age specific predation in four aphidophagous ladybird beetles. Biocontrol Science and Technology, 22: 463-476.

Morales-Ramos, J. A., & Rojas, M. G. (2017). Temperature-Dependent Biological and Demographic Parameters of Coleomegilla maculata (Coleoptera: Coccinellidae). Journal of Insect Science, 17(2): 55; 1-9.

Murakami, Y. & Tsubaki, Y. (1984).Searching efficiency of the ladybeetle Coccinella septempunctata larvae in a uniform and patchy environment.Journal of Ethology, 2: 1-6.

Nakamuta, K. (1984). Visual orientation of the ladybeetle Coccinella septempunctata L. (Col., Coccinellidae) towards its prey.Applied Entomology and Zoology, 19: 82-86.

Nakamuta, K. (1985). Mechanism of the switchover from extensive to area concentrated search behaviour of the ladybeetle Coccinella septempunctatabruckii. Journal of Insect Physiology, 31: 849-856.

Nakamuta, K. (1987). Diel rhythmicity of prey search activity and its predominance over starvation in the ladybeetle Coccinella septempunctata bruckii.Physiological Entomology, 12: 91-98.

Nakamuta, K. (1991). Aphid alarm pheromone component (E)-Beta-farnesene and local search by a predatory lady beetle Coccinella septempunctata bruckii Mulsant (Col., Coccinellidae). Applied Entomology and Zoology, 26: 1-17.

Nalepa, C.A. (2013). Coccinellidae captured in blacklight traps: Seasonal and diel pattern of the dominant species Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 110(4): 593-597.

Nault, R., Edwards, L.J. & Styer, W.E. (1973). Aphid alarm pheromones: secretion and reception. Environmental Entomology, 2: 101-105.

Nedved, O. & Salvucci, S. (2008). Ladybird Coccinella septempunctata(Coleoptera: Coccinellidae) prefers toxic preyin laboratory choice experiment. European Journal of Entomology, 105:431–436.

Nielsen, A.L., Hamilton, G.C. & Matadha, D. (2008). Developmental rate estimation and life table analysis for Halyomorpha halys (Hemiptera: Pentatomidae). Environmental Entomology, 37(2): 348-355.

Ninkovic, V., AlAbassi, S. & Pettersson, J. (2001).The influenceof aphid-induced plant volatiles on ladybird beetlesearching behavior.Biological Control, 21: 191–195.

Noble, R.R.P., Harvey, S.G. & Sams, C.E. (2002).Toxicity of Indian mustard and allylisothiocyanate to masked chafer beetle larvae.Plant Health Progress, doi:10.1094/PHP-2002-0610-01-RS.

Nordlund, D.A. & Morrison, R.K. (1990).Handling time, prey preference, and functional response for Chrysoperla rufilabris in the laboratory. Entomologia Experimentalis et Applicata, 57(3): 237-242.

Nufio, C.R. & Papaj, D.R. (2001) Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata, 99: 273–293.

Obata, S. (1986). Mechanisms of prey finding in the aphidophagous ladybird beetle Harmonia axyridis (Col., Coccinellidae). Entomophaga, 31: 303-311.

Obatake, H. & Suzuki, H. (1985). On the isolation and identification of canavanine and ethanolamine contained in the young leaves of black locus, Robinia pseudoacacia, lethal for the lady beetle, Harmonia axyridis. Technical Bulletin of Faculty AgriculturalKagawa University, 36: 107-115.

Okamoto, H. (1966). Three problems of prey specificity of aphidophagous coccinellids.In: Hodek, I. (eds): Ecology ofAphidophagous Insects. Academia, Prague and W. Junk, The Hague, pp. 45–46.

Oliver, T.H., Timms, J.E.L., Taylor, A. & Leather, S.R. (2006).Oviposition responses to patch quality in the larch ladybirdAphidecta obliterata (Coleoptera: Coccinellidae): effects ofaphid density, and con- and heterospecific tracks. Bulletin ofEntomological Research, 96: 25–34.

Omkar & Afaq, U. (2009). Intraspecific competition in the Parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae): effect of larval crowding on life history traits. International Journal of Tropical Insect Science, 29(1): 40-47.

Omkar & Bind, R.B. (2004). Prey quality dependent growth,development and reproduction of a biocontrol agent,Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae).Biocontrol Science and Technology, 14: 665-673.

Omkar & James, B.E. (2004b). Influence of temperature on the survival, development of immature stages and reproduction of a ladybeetle, Coccinella transversalis Fabricius. Entomon, 29(1): 13-23.

Omkar & Kumar, B. (2016). Effects of temperature and photoperiod on predation attributes and development of two Coccinella species (Coleoptera: Coccinellidae). Acta Entomologica Sinica, 59(1): 64-76.

Omkar & Kumar, G. (2013). Responses of an aphidophagous ladybird beetle, Anegleis cardoni, to varying densities of Aphis gossypii. Journal of Insect Science, 13(24): 1-12.

Omkar & Mishra, G. (2005). Preference–performance of a generalist predatory ladybird: a laboratory study. BiologicalControl, 34: 187-195.

Omkar & Pathak, S. (2006). Effects of different photoperiods and wavelengths of light on life-history traits of an aphidophagous ladybird, Coelophora saucia (Mulsant).Journal of Applied Entomology, 130(1): 45-50.

Omkar & Pathak, S. (2009). Crowding affects the life attributes of an aphidophagous ladybird beetle, Propylea dissecta. Bulletin of Insectology, 62(1): 35-40.

Omkar & Pervez, A. (2001). Prey preference of a ladybeetle, Micraspis discolor (Fabricius). Entomon,26(2): 195-197.

Omkar & Pervez, A. (2003). Influence of prey deprivation on biological attributes of pale morphs of the ladybeetle, Propylea dissecta (Mulsant). Insect Science and Application, 23(2): 143-148.

Omkar & Pervez, A. (2004). Temperature-dependent development and immature survival of an aphidophagous ladybeetle, Propylea dissecta (Mulsant). Journal of Applied Entomology, 128(7):510-514.

Omkar & Pervez, A. (2011). Functional response of two aphidophagous ladybirds searching in tandem.Biocontrol Science and Technology, 21: 101-111.

Omkar & Singh, K. (2007). Rhythmicity in life events of an aphidophagous ladybird beetle, Cheilomenes sexmaculata.Journal of Applied Entomology, 131(2): 85-89.

Omkar & Srivastava, S. (2001). Comparative predatory potential of a ladybird beetle, Coccinella septempunctata Linn.on six prey species. Biological Memoirs, 27(2): 59-63.

Omkar & Srivastava, S. (2002). Functional response of the ladybeetle, Coccinella septempunctata Linnaeus on Uroleucon compositae (Theobald) and Aphis nerii Boyer de Fonscolombe. Prof. S.B. Singh Commomarium, Zoological Society of India, Lucknow,115-128.

Omkar & Srivastava, S. (2003). Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata. BioControl, 48: 379-393.

Omkar & Srivastava, S. (2003b). Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata.BioControl, 48: 379-393.

Omkar (2006). Suitability of different foods for a generalist ladybird, Micraspis discolor (Coleoptera: Coccinellidae). International Journal Tropical Insect Science, 26(1): 35-40.

Omkar& James, B.E. (2003). Searching and feeding efficiency of Coccinella transversalis Fabricius on aphid, Aphis gossypii Glover. Journal ofBiological Control, 17(2): 107-112.

Omkar& James, B.E. (2004). Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). Journal of Applied Entomology, 28(2): 150-157.

Omkar& Srivastava, S. (2003a). Comparative prey consumption and searching efficiency of ladybeetles, Coccinella septempunctata Linnaeus and Coccinella transversalis Fabricius for different aphid species.Journal of Biological Control, 17(1): 35-41.

Omkar, Gupta, A.K. & Pervez, A. (2005b).Attack, escape and predation rates of larvae of two aphidophagous ladybirds during conspecific and heterospecific interactions.Biocontrol Science and Technology, 16(3): 295-305.

Omkar, Kumar, G. & Sahu, J. (2009a).Performance of a predatory ladybird beetle, Anegleis cardoni (Weise) (Coleoptera: Coccinellidae) on three aphid species. European Journal of Entomology, 106: 565-572.

Omkar, Kumar, G. & Sahu, J. (2011). Monotypic prey-mediated development, survival and life table attributes of a ladybird beetle Anegleis cardoni (Coleoptera: Coccinellidae) on different aphid species. International Journal of Tropical Insect Science, 31(3): 162-173.

Omkar, Mishra, G., Kumar, B., Singh, N. & Pandey, G. (2014). Risks associated with tandem release of large and small ladybirds in heterospecific aphidophagous guilds. The Canadian Entomologist, 146(1): 52-66.

Omkar, Pervez, A. & Gupta, A.K. (2004).Role of surface chemicals in egg cannibalism and intraguild predation by neonates of two aphidophagous ladybirds, Propylea dissecta and Coccinella transversalis.Journal of Applied Entomology, 128: 691-695.

Omkar, Pervez, A. & Gupta, A.K. (2006). Why do neonates of aphidophagous ladybird beetles preferentially consume conspecific eggs in presence of aphids? Biocontrol Science and Technology, 16(3): 233-243.

Omkar, Pervez, A., Mishra, G., Srivastava, S., Singh, S.K. & Gupta, A.K. (2005a). Intrinsic advantages of a ladybird, Cheilomenes sexmaculata over the relatively bigger two co-occurring Coccinella species. Insect Science, 12(3): 179-184.

Omkar, Rastogi, S. & Pandey, P. (2008). Effect of temperature on development and immature survival of Zygogramma bicolorata (Coleoptera: Chrysomelidae) under laboratory conditions. International Journal of Tropical Insect Science, 28: 130-135.

Omkar, Rastogi, S. & Pandey, P. (2009). Effect of temperature on reproductive attributes of the Mexican beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science, 29: 48-52.

Omkar, Rastogi, S. & Pandey, P. (2009b). Effect of temperature on reproductive attributes of the Mexican beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science, 29(1): 48-52.

Osawa, N. (1989). Sibling and non-sibling cannibalism bylarvae of a lady beetle Harmonia axyridis Pallas (Coleoptera,Coccinellidae) in the field.Research in Population Ecology, 31:153–160.

Ovchinnikov, A.N., Belyakova, N.A., Ovchinnikova, A.A., & Reznik, S. Y. (2019).Factors determining larval cannibalistic behavior in invasive and native populations of the multicolored Asian ladybird, Harmonia axyridis. Entomologia Generalis, 243-254.

Palmer, D.J. & Sheppard, J.L. (2002). Mass rearing Pseudoscymnus tsugae at the New Jersey Department of Agriculture: challenges and lessons. In Proceedings of the Hemlock Woolly Adelgid in the Eastern United States Symposium. New Jersey Agricultural Experiment Station and Rutgers University, 214-220 pp.

Papachristos, D.P., Katsarou, I., Michaelakis, A. & Papanikolaou, N.E. (2015). Influence of different species of aphid prey on the immature survival and development of four species of aphidophagous coccinellids (Coleoptera: Coccinellidae). European Journal of Entomology, 112(3): 440.

Papaj, D.R. & Prokopy, R.J. (1989).Learning in phytophagous insects.Annual Review of Entomology, 34: 315-350.

Papaj, D.R. & Vet, L.E.M. (1990).Odor learning and foraging success in the parasitoid, Leptopilina heterotoma.Journal of Chemical Ecology, 16: 3137–3150.

Papaj, D.R. (1993). Automatic behaviour and the evolution ofinstinct: Lessons from learning in parasitoids. In: Papaj, D.R., Lewis, A.C. (Eds.), Insect Learning Ecological and EvolutionaryPerspectives. Chapman and Hall, London, 243-272 pp.

Papanikolaou, N.E., Milonas, P.G., Kontodimas, D.C., Demiris, N. & Matsinos, Y.G. (2013). Temperature-dependent development, survival, longevity, and fecundity of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). Annals of the Entomological society of America, 106(2): 228-234.

Pasteels, J.M. (2007). Chemical defence, offence and alliance in ants–aphids–ladybirds relationships.Population Ecology, 49: 5-14.

Patel, P, Kumar, B. & Kumar, D. (2017).Fluctuations in defended prey availability modulate functional response curves of Menochilus sexmaculatus Fab. (Coleoptera: Coccinellidae). Acta Entomologica Sinica (in press).

Perdikis, D.C. & Lykouressis, D.P. (2002). Thermal requirements fordevelopment of the polyphagous predator Macrolophus pygmaeus(Hemiptera: Miridae). Environmental Entomology, 31: 661–667.

Perez-Maluf, R., Rafalimanana, H., Campan, E., Fleury, F. & Kaiser, L. (2008). Differentiation of innate but not learnt responses to host-habitat odours contributes to rapid host finding in a parasitoid genotype. Physiological Entomology, 33: 226–232.

Pervez, A. & Omkar (2006). Ecology and biological control application of multicoloured Asian ladybird, Harmonia axyridis-A review.Biocontrol Science and Technology, 16: 111-128.

Pervez, A. &Omkar (2004a).Prey-dependent life attributes of an aphidophagous aadybird beetle, Propylea dissecta (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14(4): 385-396.

Pervez, A. &Omkar (2004b).Temperature dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Mulsant). Biocontrol Science and Technology, 14(6): 587-594.

Pervez, A., Singh, P.P., & Bozdoğan, H. (2018).Ecological perspective of the diversity of functional responses. European Journal of Environmental Sciences, 8: 97-101.

Pettersson, J., Ninkovic, V., Glinwood, R., Birkett, M.A. & Pickett, J.A. (2005). Foraging in a complex environment–semiochemicals support searching behaviour of the seven spot ladybird. European Journal of Entomology, 102: 365-370.

Phoofolo, M.W. & Obrycki, J.J. (1998).Potential for intraguild predation and competition among predatory Coccinellidae and Chrysopidae. Entomologia Experimentalis et Applicata, 89: 47-55.

Phoofolo, M.W., Giles, K.L. & Elliott, N.C. (2007). Quantitative evaluation of suitability of the greenbug, Schizaphisgraminum, and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control, 41: 25-32.

Phoofolo, M.W., Giles, K.L. & Elliott, N.C. (2008). Larval life history responses to food deprivation in three species of predatory lady beetles (Coleoptera: Coccinellidae). Environmental Entomology, 37: 315-322.

Polis, G.A. (1981).The evolution and dynamics of intraspecific predation.Annual Review of Ecology and Systematics, 12: 225-251.

Provost, C., Lucas, E., Coderre, D. & Chouinard, G. (2006).Prey selection by the lady beetle Harmonia axyridis: theinfluence of prey mobility and prey species. Journal of Insect Behavior, 19: 265–277.

Punzo, F. & Garman, B. (1989). Effects of encounter experience on the hunting behavior of the spider wasp, Pepsis formosa (Say) (Hymenoptera: Pompilidae). Southwest Naturalist, 34: 513–518.

Qin, Z.Q., Wei, J.J., Song, X.P., Luo, Y.W., Liu, L. & Deng, Z.Y. (2017).Efficacy of the Ladybird Beetle Cryptolaemus montrouzieri Mulsant for Control of Saccharicoccus sacchari (Cockerell). Sugar Tech, 1-5.

Qvarnstrom, A. & Price, T.D. (2001).Maternal effects, paternal effects and sexual selection.Trends in Ecology and Evolution, 16:95 -100.

Rahimi, R., Mahdian, K. & Noghabi, S.S. (2017).Effect of temperature on functional response of coccinellid (Coccinula elegantula) on Aphis gossypii. Journal of Science and Technology of Greenhouse Culture, 7(28): 125-133.

Ramalho, F.S., Wanderley, P.A., Malaquias, J.B., Rodrigues, K.E.V., Souza, J.V.S. & Zanuncio, J.C. (2009). Temperature-dependent development rates of Bracon vulgaris, a parasitoid of boll weevil. Phytoparasitica, 37: 17-25.

Rana, J.S., Dixon, A.F.G. & Jarosik, V. (2002).Costs and benefits of prey specialization in a generalist insect predator.Journal of Animal Ecology, 71: 15-22.

Rath, S.S. (2010). Food utilization efficiency in Antheraea mylitta fed on Terminalia arjuna leaves. Academic Journal of Entomology, 3(1): 23-28.

Regniere, J., Powell, J., Bentz, B. & Nealis, V. (2012). Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology, 58: 634-647.

Reis, P.R., Teodoro, A.V., Neto, M.P. & Da Silva, E.A. (2007). Life history of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) on coffee plants. Neotropical Entomology, 36(2): 282-287.

Remen, C., 2004. Associated learning of colour and odour in the seven-spotted ladybird Coccinella septempuncata (L.): an olfactometer experiment. Inst. f. Entomol.Sveriges lantbruksuniv.1-33 pp.

Reznik, S.Y.A. & Vaghina, N.P. (2011). Photoperiodic control of development and reproduction in Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 108: 385-390.

Ricklefs, R.E. (1990). Ecology. W.H. Freeman & Co., New York.

Robinson, A.G. (1951). Annotated list of predators of Tetranychid mites in Manitoba.Report on Entomological Society of Ontario, 82: 33-37.

Rocca, M., Rizzo, E., Greco, N., & Sánchez, N. (2017). Intra‐and interspecific interactions between aphidophagous ladybirds: the role of prey in predator coexistence. Entomologia Experimentalis et Applicata, 162(3): 284-292.

Roger, C., Coderre, D. & Boivin, G. (2000). Differential preyutilization by the generalist predator Coleomegilla maculatelengi according to prey size and species. Entomologia Experimentalis et Applicata,94: 3–13.

Roger, C., Coderre, D., Vigneault, C. & Boivin, G. (2001).Prey discrimination by a generalist coccinellid predator:effect of prey age or parasitism? Ecological Entomology, 26:163–172.

Roitberg, B.D., Myers, J.H. & Frazer, B.D. (1979).The influence of predators on the movement of apterous pea aphids between plants.Journal of Animal Ecology, 48: 111-122.

Rondoni, G., Athey, K.J., Harwood, J.D., Conti, E. Ricci, C. & Obrycki, J.J. (2015). Development and application of molecular gut-content analysis to detect aphid and coccinellid predation by Harmonia axyridis (Coleoptera: Coccinellidae) in Italy. Insect Science, 22:719–730.

Rondoni, G., Ielo, F., Ricci, C. & Conti, E. (2017). Behavioural and physiological responses to prey-related cues reflect higher competitiveness of invasive vs. native ladybirds. Scientific Reports, 7.

Rosagro, R.M., Borges, I., Vieira, V., Solé, G. P., & Soares, A.O. (2019). Evaluation of Scymnus nubilus (Coleoptera: Coccinellidae) as a biological control agent against Aphis spiraecola and Cinara juniperi (Hemiptera: Aphididae). Pest Management Science.https://doi.org/10.1002/ps.5585.

Rosenheim, J.A. & Corbett, A. (2003). Omnivory and the indeterminacy of predator function: can a knowledge of foraging behavior help? Ecology, 84: 2538-2548.

Ruberson, J.R., Shen, Y.J. & Kring, T.J. (2000). Photoperiodic sensitivity and diapauses in the predator Orius insidiosus (Heteroptera: Anthocoridae). Annals of the Entomological Society of America, 93(5): 1123-1130.

Sabelis, M.W. (1992). Predatory arthropods. In: Crawley, M.J. (eds): Natural Enemies: Thepopulation biology of predators, parasites anddiseases. Oxford, UK, pp. 225-264.

Said, K.K., Ali Shah, M. & Baloch, U.K. (1985).Optical orientation in predatory coccinellids.Pakistan Journal of Agricultural Research, 6: 40-44.

Saikkonen, K., Taulavuori, K., Hyvonen, T., Gundel, P.E., Hamilton, C.Y.D.E.,Vanninen, I., Nissinen, A. & Helander, M. (2012). Climate change-drivenspecies’ range shifts filtered by photoperiodism. Nature Climate Change, 2: 239-242.

Santos-Cividanes, T.M., Dos Anjos, A.C.R., Cividanes, F.J. & Dias, P.C. (2011). Effects of food deprivation on the development of Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae). Neotropical Entomology, 40 (1): 112-116.

Sarmento, R.A., Pallini, A., Venzon, M., Desouza,O., Molina-Rugama, A.J. & Oliveira, C.L. (2007).Functional response of the predator, Eriopisconnexa (Coleoptera: Coccinellidae) to differentprey types. Brazilian Archives of Biology andTechnology, 50(1): 121-126.

Sarwar, M. & Saqib, S.M. (2010).Rearing of predatory seven spotted ladybird beetle Coccinella septempunctata L. (Coccinellidae) on natural and artificial diets under laboratory conditions.Pakistan Journal of Zoology, 42: 47-51.

Sato, S., Shinya, K., Yasuda, H., Kindlmann, P. & Dixon, A.F.G. (2009a). Effects of intra and interspecific interactions on the survival of two predatory ladybirds (Coleoptera: Coccinellidae) in relation to prey abundance. Applied Entomology and Zoology, 44: 215-221.

Sato, S., Yasuda, H., Evans, E.W. & Dixon, A.F.G. (2009b).Vulnerability of larvae of two species of aphidophagous ladybirds, Adalia bipunctata Linnaeus and Harmonia axyridis Pallas, to cannibalism and intraguild predation.Entomological Science, 12: 111-115.

Schenk, D. & Bacher, S. (2002). Functional responseof a generalist insect predator to one ofits prey species in the field.Journal of AnimalEcology, 71: 524-531.

Schenk, D., L. F. Bersier and S. Bacher. 2005. An experimentaltest of the nature of predation: neither prey- nor ratiodependent. Journal of AnimalEcology,74: 86–91.

Schuder, I., Hommes, M. & Larink, O. (2004). The influence of temperature and food supply on the development of Adalia bipunctata (Coleoptera: Coccinellidae). European Journal of Entomology, 101: 379-384.

Schuldiner-Harpaz, T. & Coll, M. (2017).Effect of diet history on prey and pollen food choice by two lady beetle species. Journal of Insect Behavior, 30(4), 432-438.

Seagraves, M.P. (2009). Lady beetle oviposition behavior in response to the trophic environment.BiologicalControl, 51: 313-322.

Sentis, A., Hemptinne, J.L. & Brodeur, J. (2012).Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency.Oecologia, 169: 1117-1125.

Singh, N., Mishra, G. & Omkar (2016a). Effect of photoperiod on slow and fast developing individuals in aphidophagous ladybirds, Menochilus sexmaculatus and Propylea dissecta (Coleoptera: Coccinellidae). Insect science, 23(1): 117-133.

Singh, S., Mishra, G. & Omkar (2016b). Perceived prey quantity modulates oviposition in the ladybird Menochilus sexmaculatus. Journal of ethology, 34(1): 59-64.

Skelhorn, J. & Rowe, C. (2006).Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Animal Behaviour, 72(4): 827-834.

Skelhorn, J., Halpin, C.G. & Rowe, C. (2016).Learning about aposematic prey. Behavioral Ecology, 27(4): 955-964.

Sloggett, J.J. (2008a). Habitat and dietary specificity in aphidophagous ladybirds (Coleoptera: Coccinellidae): explaining specialization. Proceedings of the Netherlands Entomological Society Meeting, 9: 95-113.

Sloggett, J.J. (2008b). Weighty matters: body size, diet and specialization in aphidophagous ladybird beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 105: 381-389.

Smith, B.C. (1965). Effect of food on the longevity, fecundity and development of adult coccinellids.The Canadian Entomologist, 97: 760-768.

Snyder, W.E. & Ives, A.R. (2003). Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology, 84 (1): 91-107.

Snyder, W.E. (2009). Coccinellids in diverse communities: Which niche fits?. Biological Control, 51(2), 323-335.

Snyder, W.E., Joseph, S.B., Preziosi, R.F. & Moore, A.J. (2000).Nutritional benefits of cannibalism for the lady beetleHarmonia axyridis (Coleoptera: Coccinellidae) when preyquality is poor. Environmental Entomology, 29: 1173-1179.

Soares, A.O., Coderre, D. & Schanderl, H. (2004). Dietary self-selection behaviour by the adults of the aphidophagous ladybeetle Harmonia axyridis (Coleoptera: Coccinellidae). Journal of Animal Ecology, 73(3): 478-486.

Solomon, M.E. (1949). The natural control of animal populations.Journal of Animal Ecology, 18: 1-35.

Solomon, M.E. (1964). Analysis and Processes Involved in the Natural Control of Insects. Pp. 1-54 in J.B. Cragg (Ed).Advances in Ecological Research 2.London and New York Academic Press.

Srivastava, S. &Omkar (2004). Fertility & mortality Life–tables of an aphidophagous ladybird beetle, Coccinella septempunctata Linnaeus. Entomon, 29(2): 101-110.

Stamp, N.E. & Meyerhoefer, B. (2004).Effects of preyquality on social wasps when given a choice of prey.Entomologia Experimentalis et Applicata, 110: 45-51.

Stearns, S.C. (1992). The Evolution of Life Histories. Oxford University Press, Oxford.

Stephens, D.W. & Krebs, J.R. (1986).Foraging Theory.Princeton University Press, Princeton, New Jersey, USA, 247 pp.

Stephens, D.W. (1991). Change, regularity and value in the evolution of animal learning.Behavioral Ecology, 2: 77–89.

Stireman, J.O. (2002). Learning in the generalist tachinid parasitoid Exorista mella Walker (Diptera: Tachinidae). Journal of Insect Behavior, 15: 689–707.

Sutherland, A.M. & Parrella, M.P. (2009). Mycophagy in Coccinellidae: review and synthesis. Biological Control, 51: 284-293.

Timms, J.E., Oliver, T.H., Straw, N.A. & Leather, S.R. (2008).The effect of host plant on the coccinellid functionalresponse: Is the conifer specialist Aphidecta obliterata (L.)(Coleoptera: Coccinellidae) better adapted to spruce thanthe generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?Biological Control, 47: 273–281.

Toosi, M., Rasekh, A., & Osawa, N. (2019). Effects of intraguild predation on the life history traits and progeny of the ladybird beetle Hippodamia variegata. Bulletin of Insectology, 72: 161-168.

Triltsch, H. (1999). Food remains in the guts of Coccinella septempunctata(Coleoptera: Coccinellidae) adults and larvae. European Journal of Entomology, 96: 355-364.

Tschanz, B., Bersier, L.F. & Bacher, S. (2007). Functionalresponses: a question of alternative prey and predatordensity. Ecology, 88: 1300–1308.

Ueno, H., Hasegawa, Y., Fujiyama, N.

Most read articles by the same author(s)